Jump to content

Astrocity.es lanza una serie de videos sobre planetaria


fsr

Publicaciones recomendadas

Aproveché que les tenía que pegar un vistazo a los videos, para transcribir un resumen, así no tengo que andar volviendo a ver el video para encontrar datos puntuales. Se los paso:

 

Que es la fotografía planetaria?

 

Básicamente, luchar contra la atmósfera. Esto se logra capturando video en vez de fotografías, en lo que se llama "lucky imaging". La atmósfera degrada las imagenes en forma aleatoria, entonces al usar camaras con un framerate lo mas alto posible, en alguna cantidad de los cuadros capturados, la imagen estará estable, mientras que en los otros estará borroneada. Se usa software para detectar los cuadros estables y luego se apilan esos cuadros para obtener una imagen.

 

Para capturar imagenes con camaras para planetaria, se usa FireCapture, que es un software gratuito e incluye todo lo necesario para hacer la captura, incluso controla ruedas portafiltros y la montura misma, es una solución completa para la captura. En realidad todos los softwares que menciona en los videos son gratuitos, excepto Photoshop.

 

Para apilar, se usa AutoStakkert, y para sharpening por wavelets, se usa Registax.

 

Elegir telescopio y camara para planetaria

 

Comenta que ahora usan camaras de visión artificial ("machine vision"), o camaras dedicadas para planetaria. Christopher actualmente usa la cámara QHY290 monocromática, pero recomienda camaras a color para principiantes, porque simplifican la captura y procesamiento de las tomas, pero no son tan sensibles y si el planeta está algo bajo, vas a tener problemas con la dispersión atmosférica. Tienen un framerate muy rápido y un bajo nivel de ruido. Con las cámaras monocromáticas habrá que comprar una rueda de filtros motorizada con el set de filtros RGB, pero el nivel de calidad que se obtiene de esa manera es muy superior.

 

En cuanto al telescopio, el recomienda un Schmidt-Cassegrain, aunque se puede hacer con cualquier equipo, pero el SC es compacto y ligero. La apertura será lo mayor posible que podamos permitirnos tanto en costo como en transportabilidad. La apertura nos permite mayor resolución y brillo de la imagen, lo que se traduce en mayores framerates.

 

Tienes que tener una montura estable, para lo cual tener un SC ayuda, porque al ser mas compacto y liviano que otros diseños para la misma apertura, no necesita una montura tan grande como necesitaría un newton, por ejemplo.

 

Otros elementos que se necesitan son:

  • un barlow de buena calidad, para aumentar el tamaño de los objetos capturados.
  • opcionalmente para investigación planetaria, filtros UV, IR y de banda de metano.
  • opcionalmente algo que ayuda son los espejos basculantes (flip mirros), que ayudan a centrar el objeto sin tener que lidiar con el pequeño campo de visión de la cámara.
  • un enfocador motorizado. El enfoque manual hace vibrar demasiado el equipo.
  • si tiene un telescopio SC, recomienda un enfocador crayford.
  • los pads para supresión de vibraciones, especialmente si el piso es de cemento u otro material duro que las transmita. Este punto lo pone como muy importante.

 

Planificación de fotografía planetaria

 

Debes elegir la mejor ubicación para la sesión. El seeing es lo mas importante, pero no lo es todo.

La ubicación tiene que estar lejos de fuentes de calor. Incluso el cemento caliente va a seguir emitiendo calor durante la noche. Christopher nos dice que el lo que hace es baldear el suelo si es de cemento, para que se enfríe.

Nos recomienda chequear el jetstream en la pagina www.stormsurfing.com . Si estás en una zona con jetstream no dice prácticamente que desistas, pero que no hay problema con intentarlo de todas formas, porque tal vez la predicción no sea 100% certera.

Hay que enfriar el telescopio. Cuanto mas grande sea, mas va a tardar. Hay coolers diseñados para enfriarlos. A el con el C14 le lleva 3 horas para enfriarlo.

Hay que colimar el telescopio con la camara puesta, porque la alineación del telescopio se altera un poco con la distinta distribución de peso (en el video hay una descripción de como hacerlo). Un tip interesante que nos dá, es usar un filtro rojo para colimar si el seeing no es muy bueno, porque la luz roja es menos afectada por el.

Si estás usando un telescopio grande como un C11 ó C14, hay que bloquear el espejo, para que no se mueva.

Usa las Efemérides de WinJupos para ver si hay algún evento interesante, como transitos de la GMR o alguna luna.

 

Claves en fotografía planetaria

 

El software para capturar será FireCapture.

Exposure y Gain no tienen valores que se puedan usar en cualquier situación. Depende de lo que quieras fotografiar, el seeing, la transparencia y del equipamiento que usemos.

Recomienda usar Region of Interest (ROI) para reducir el tamaño del video a la zona que queremos capturar. Esto reducirá dramáticamente el tamaño de los archivos y el tiempo requerido para procesar las tomas. 

Hay que marcar que se usen los nombres de archivo compatibles con WinJupos, que es de donde ese programa obtiene la fecha y la hora. Esta opción se encuentra dentro de Capture Settings.

Hay que configurar la rueda de filtros motorizada. Solo tienes que ir al primer filtro al principio (RED, normalmente) y luego gira por si solo a los demás colores, si está bien configurado. La rueda portafiltros debe ser compatible con ASCOM (en el video no comenta de 3 específicas que funcionan bien con FireCapture).

Tienes que encontrar el punto optimo ("sweet spot") de tu sistema, esto sería la mejor configuración para parámetros como Exposure y Gain. Sólo puede obtenerse por prueba y error. Recomienda usar el framerate mas alto que nos sea posible, a la vez que no haya que ponerle tanto Gain que el ruido se nos vaya a las nubes. Para la QHY290 recomienda entre 300 y 400 dBi de Gain.

Tómate tu tiempo para enfocar. Es bastante difícil lograr el foco perfecto, sobre todo si el seeing no es muy bueno. Hay que ser paciente y tomarse al menos 5 minutos para hacerlo bien. No se pueden ayudas de enfoque (como una mascara de bahtinov), porque no funcionan con planetas. Con Jupiter se puede enfocar sobre alguna de las lunas, que será mas fácil que enfocar sobre el planeta.

El mayor secreto de la fotografía de planetas es la desrotación. Capturar muchísimos datos. Ahora que existe la desrotación puedes capturar hasta 1 hora de datos, si las condiciones son malas y desrotar para obtenér buenos datos.

 

Captura de imágenes planetarias

 

Cada objeto, cada planeta tiene distintas configuraciones. Hay que encontrar el punto optimo para cada uno.

 

Cual es la guia que uso para obtener la Exposure y Gain? La guia que uso es el histograma.

 

Jupiter:

El nivel de histograma que uso es entre el 80 y 90%. Es lo maximo que debería estar. Si usas un histograma demasiado bajo, obtienes lo que se llama el "efecto piel de cebolla", donde los bordes del planeta parecen tener un defecto donde se ven distintas capas.

Ten cuidado con el tiempo de integración, porque Jupiter rota muy rápido. 1 vez cada 10 horas. Así que dependiendo de tu equipo, de la resolución que permita obtener, será el tiempo maximo que podemos capturar. Por ejemplo si tienes un C8, limita tu tiempo de captura a 1 minuto. En un C14 el está usando 30 segundos. No te preocupes, porque con la desrotación puedes capturar mas videos y obtener algo equivalente a un video de mayor duración.

Como Jupiter tiene lunas brillantes, úsalas para enfocar.

Si tienes el filtro de banda de metano, recomienda usarlo, porque tiene un valor científico muy alto. Muestra las nubes mas altas de Jupiter. Es un filtro de banda muy estrecha, así que la imagen será muy oscura. Debes usar bining para obtener una imagen util, y aún así la imagen tendrá mucho grano. Se usa un tiempo de exposición mas largo, aunque al usar bining estamos reduciendo la resolución, así que eso permite esos tiempos mayores. Con el C14 el captura hasta 2 minutos. Debes usar dark frames, ya que estás usando tiempos altos y mucha ganancia. El captura 5 imagenes y las apila para obtener el master dark para el procesamiento de la banda de metano.

 

Saturno:

Un problema es que tiene un brillo superficial muy bajo. Necesitas mucho tiempo de integración y usar desrotación. El invierte cerca de 1 hora para capturar a Saturno.

Por tener un brillo superficial muy bajo, debes usar una ganancia muy alta. El componente de Azul es muy bajo, así que tienes que usar un framerate diferente para el canal BLUE comparado al RED o GREEN.

El histograma también entre el 80 y 90%.

 

Marte:

Es el planeta mas fácil de capturar, porque tiene un brillo superficial muy alto, rota muy lentamente y en ciertos años se ve enorme.

El histograma también entre el 80 y 90% en RED y GREEN, y un 70% para BLUE.

Cuando captures el BLUE, no deben haber detalles de la superficie, porque de haberlos, significa que ese filtro azul está dejando pasar IR. Con el filtro azul en Marte deberías ver solo las nubes.

Rota muy lento, en forma similar a la Tierra, así que puedes capturar hasta 4 minutos.

Asegurate de que tus filtros bloquean UV e IR, o tendrás dificultades para capturar detalles en las nubes de Marte.

 

Captura muchos datos, en especial cuando el seeing o la transparencia no son buenos, porque la desrotación es lo unico que puede salvar tus datos en estas circunstancias.

Cuando el seeing es bueno, el captura 3 a 4 imagenes de Jupiter y Marte, y 15 de Saturno.

Si el seeing es malo, el captura 10 a 15 imagenes de Jupiter y Marte.

 

Procesado de foto planetaria (I)

 

El flujo de trabajo sería:

 

  • Apilado con AutoStakkert
  • Sharpening inicial con wavelets en Registax
  • Alineación RGB en Photoshop
  • Desrotación con Winjupos
  • Sharpening final y mas procesamiento con Photoshop

Autostakkert requiere mucha potencia de procesamiento, debido a los calculos complejos que tiene que realizar. Es el software que mejor apilado da. Un detalle es que sólo acepta videos AVI o SER sin compresión.

Abrimos la imagen, presionamos el botón "Place AP Grid" para que aparezcan los puntos de alineacion [noten que AP Size en ocasiones hay que variarlo, ya que si la imagen es chica y le dejan el valor que se ve en el video, no va a detectar nada]. Luego hay que elegir que % se va a apilar (son 4 recuadros, se usa el que está mas a la izquierda). El valor a ingresar depende de la calidad de las imagenes. En el caso del video eran de muy buena calidad, así que puso 80%.

Seleccionar 1.5x Drizzle. Esto aumenta el tamaño de la imagen, usando un algoritmo que aprovecha el movimiento propio entre tomas.

En Image Stabilization, seleccionar "Planet" y marcar "Dynamic Background".

En Quality Estimatior, seleccionar "Gradient".

Ahora presionamos "Stack". Este proceso demora mucho tiempo. Al finalizar, nos guarda automaticamente el archivo (.TIF, aunque podríamos seleccionar otro formato, pero no es necesario).

 

Abrimos Registax. Es importante que lleguemos a valores correctos de wavelets, porque con ellos puedes obtener una imagen perfectamente nitida. De otra forma, podría resultar en una imagen demasiado dura o demasiado borrosa.

Primero hacemos click en Select para abrir el archivo.

Ahora vamos a la pestaña Wavelet, y elegimos los valores que querramos. Esto es prueba y error. En el video se pueden ver los parámetros que usó Christopher para esa imagen, y para el equipo que usa.

 

Si tenemos una camara monocromática, ahora abrimos Photoshop para hacer la alineación RGB. Primero abrimos el archivo BLUE, el GREEN y el RED. Si los archivos están en formato color, hay que convertirlos a escala de grises ("grayscale"). Luego vas a Canales, abres el menú con el pequeño icono con el triangulo hacia abajo y las barritas horizontales (v=) y elegimos Combinar Canales ("Merge Channels") y elegimos RGB. Asegurate de que el RED, GREEN y BLUE indiquen los archivos correctos, presionar Ok y ahora tenemos una imagen a color. Pero la alineación de canales veremos que no es perfecta. Tenemos que usar la herramienta Mover, seleccionar el canal que queremos mover, y moverlo con las teclas del cursor, hasta lograr que los 3 coincidan.

Finalmente guardamos el archivo, haciendo click sobre el nombre del archivo GREEN, y cambiando la G en el nombre del archivo, por una C (la letra C significa "Color"). Es importante este paso, porque así WinJupos tiene la hora correcta.

 

Desrotaciones con Winjupos (y procesamiento final)

 

Ahora abrimos WinJupos. Este programa tiene una característica llamada desrotación, que es una de las herramientas mas poderosas en fotografía planetaria.

La desrotación permite apilar imágenes mas allá de los límites de rotación del planeta. Es una herramienta muy potente, porque con mas datos puedes ser mas agresivo con el sharpening y la reducción de ruido. 

El primer paso de la desrotación se llama Medida de Imagen, para esto vamos a Recording y luego Image Measurement. Luego eliges Open Image, y abres la imagen a color. Lo primero que ves es este patrón sobre Jupiter (porque la imagen que usa es de Jupiter, si no se vería un patrón diferente).

No es necesario ingresar la fecha y hora, si usaste el formato de archivo compatible con WinJUPOS.

Lo siguiente es alinear el patrón sobre el planeta. En Jupiter es fácil, sólo tienes que presionar F11 y el patrón se alinea automáticamente, pero asegúrate de que el patrón esté alineado con las bandas y zonas de Jupiter. Así que vuelves a la pestaña Imag. y elijes Save para guardar el archivo .IMS. Este es el archivo de Medida de Imagen. Tienes que hacer esto en todas las imagenes que quieres desrotar.

Una vez que terminas con la Medida de Imagen de todos los videos, vas a Tools -> De-rotation of Images. Lo primero aquí es ir a Edit -> Add y agregas todos los videos.

Tienes que elegir el formato para guardarlo. Christopher por lo general usa TIFF (48 bit). La orientación de la imagen es North at Top.

Hay una característica llamada Limb Darkening (la columna que dice LD value). Nos dice que va un valor de 0.6 ó 0.7 para evitar que aparezca un borde brillante alrrededor del planeta.

Ahora presionar el botón Compile Image y esto desrotará la imagen.

 

Ahora realizamos el procesado final con Photoshop. También necesitamos un software especial para sharpening. El que sugiero usar es Nik Collection, que ahora lo hace DxO. Y además un software de reducción de ruido que se llama Topaz Labs Denoise.

Lo primero es abrir el archivo en Photoshop, y abrir la imagen final desrotada (en el video se ve que tiene una F en el nombre de archivo, donde otros archivos tienen R, G, B, ó C). La imagen en particular del video se vé bastante oscura, así que podémos ajustar los Niveles, básicamente moviendo el nivel de blanco hacia la izquierda todo lo que sea necesario.

Antes de aplicar sharpening, debes ir a Filtros -> Ruido -> Destramar ("Despeckle"). Este filtro reduce las distorsiones que el sharpening podría exagerar.

Luego vamos a Nik Collection, donde normalmente usa Output Sharpener. Elijes una parte de la imagen para previsualizar el cambio. Normalmente usa unos settings que muestra en el video. Una vez satisfecho, presionas Ok.

El problema es que la imagen se vé algo ruidosa, así que vamos a Filtros -> Topaz Labs Denoise. Normalmente usa un valor de 6, pero puedes probar otros valores. Con este software, el ruido desaparece, pero la nitidez de la imagen no cambia.

Así que ahí lo tienes! Una imagen nitida y libre de ruido de Jupiter.

 

Saludos

Editado por fsr
  • Like 2
  • Thanks 4

Fernando

Enlace al comentario
Compartir en otros sitios web

hace 2 horas, fsr dijo:

Aproveché que les tenía que pegar un vistazo a los videos, para transcribir un resumen, así no tengo que andar volviendo a ver el video para encontrar datos puntuales. Se los paso:

 

Que es la fotografía planetaria?

 

Básicamente, luchar contra la atmósfera. Esto se logra capturando video en vez de fotografías, en lo que se llama "lucky imaging". La atmósfera degrada las imagenes en forma aleatoria, entonces al usar camaras con un framerate lo mas alto posible, en alguna cantidad de los cuadros capturados, la imagen estará estable, mientras que en los otros estará borroneada. Se usa software para detectar los cuadros estables y luego se apilan esos cuadros para obtener una imagen.

 

Para capturar imagenes con camaras para planetaria, se usa FireCapture, que es un software gratuito e incluye todo lo necesario para hacer la captura, incluso controla ruedas portafiltros y la montura misma, es una solución completa para la captura. En realidad todos los softwares que menciona en los videos son gratuitos, excepto Photoshop.

 

Para apilar, se usa AutoStakkert, y para sharpening por wavelets, se usa Registax.

 

Elegir telescopio y camara para planetaria

 

Comenta que ahora usan camaras de visión artificial ("machine vision"), o camaras dedicadas para planetaria. Christopher actualmente usa la cámara QHY290 monocromática, pero recomienda camaras a color para principiantes, porque simplifican la captura y procesamiento de las tomas, pero no son tan sensibles y si el planeta está algo bajo, vas a tener problemas con la dispersión atmosférica. Tienen un framerate muy rápido y un bajo nivel de ruido. Con las cámaras monocromáticas habrá que comprar una rueda de filtros motorizada con el set de filtros RGB, pero el nivel de calidad que se obtiene de esa manera es muy superior.

 

En cuanto al telescopio, el recomienda un Schmidt-Cassegrain, aunque se puede hacer con cualquier equipo, pero el SC es compacto y ligero. La apertura será lo mayor posible que podamos permitirnos tanto en costo como en transportabilidad. La apertura nos permite mayor resolución y brillo de la imagen, lo que se traduce en mayores framerates.

 

Tienes que tener una montura estable, para lo cual tener un SC ayuda, porque al ser mas compacto y liviano que otros diseños para la misma apertura, no necesita una montura tan grande como necesitaría un newton, por ejemplo.

 

Otros elementos que se necesitan son:

  • un barlow de buena calidad, para aumentar el tamaño de los objetos capturados.
  • opcionalmente para investigación planetaria, filtros UV, IR y de banda de metano.
  • opcionalmente algo que ayuda son los espejos basculantes (flip mirros), que ayudan a centrar el objeto sin tener que lidiar con el pequeño campo de visión de la cámara.
  • un enfocador motorizado. El enfoque manual hace vibrar demasiado el equipo.
  • si tiene un telescopio SC, recomienda un enfocador crayford.
  • los pads para supresión de vibraciones, especialmente si el piso es de cemento u otro material duro que las transmita. Este punto lo pone como muy importante.

 

Planificación de fotografía planetaria

 

Debes elegir la mejor ubicación para la sesión. El seeing es lo mas importante, pero no lo es todo.

La ubicación tiene que estar lejos de fuentes de calor. Incluso el cemento caliente va a seguir emitiendo calor durante la noche. Christopher nos dice que el lo que hace es baldear el suelo si es de cemento, para que se enfríe.

Nos recomienda chequear el jetstream en la pagina www.stormsurfing.com . Si estás en una zona con jetstream no dice prácticamente que desistas, pero que no hay problema con intentarlo de todas formas, porque tal vez la predicción no sea 100% certera.

Hay que enfriar el telescopio. Cuanto mas grande sea, mas va a tardar. Hay coolers diseñados para enfriarlos. A el con el C14 le lleva 3 horas para enfriarlo.

Hay que colimar el telescopio con la camara puesta, porque la alineación del telescopio se altera un poco con la distinta distribución de peso (en el video hay una descripción de como hacerlo). Un tip interesante que nos dá, es usar un filtro rojo para colimar si el seeing no es muy bueno, porque la luz roja es menos afectada por el.

Si estás usando un telescopio grande como un C11 ó C14, hay que bloquear el espejo, para que no se mueva.

Usa las Efemérides de WinJupos para ver si hay algún evento interesante, como transitos de la GMR o alguna luna.

 

Claves en fotografía planetaria

 

El software para capturar será FireCapture.

Exposure y Gain no tienen valores que se puedan usar en cualquier situación. Depende de lo que quieras fotografiar, el seeing, la transparencia y del equipamiento que usemos.

Recomienda usar Region of Interest (ROI) para reducir el tamaño del video a la zona que queremos capturar. Esto reducirá dramáticamente el tamaño de los archivos y el tiempo requerido para procesar las tomas. 

Hay que marcar que se usen los nombres de archivo compatibles con WinJupos, que es de donde ese programa obtiene la fecha y la hora. Esta opción se encuentra dentro de Capture Settings.

Hay que configurar la rueda de filtros motorizada. Solo tienes que ir al primer filtro al principio (RED, normalmente) y luego gira por si solo a los demás colores, si está bien configurado. La rueda portafiltros debe ser compatible con ASCOM (en el video no comenta de 3 específicas que funcionan bien con FireCapture).

Tienes que encontrar el punto optimo ("sweet spot") de tu sistema, esto sería la mejor configuración para parámetros como Exposure y Gain. Sólo puede obtenerse por prueba y error. Recomienda usar el framerate mas alto que nos sea posible, a la vez que no haya que ponerle tanto Gain que el ruido se nos vaya a las nubes. Para la QHY290 recomienda entre 300 y 400 dBi de Gain.

Tómate tu tiempo para enfocar. Es bastante difícil lograr el foco perfecto, sobre todo si el seeing no es muy bueno. Hay que ser paciente y tomarse al menos 5 minutos para hacerlo bien. No se pueden ayudas de enfoque (como una mascara de bahtinov), porque no funcionan con planetas. Con Jupiter se puede enfocar sobre alguna de las lunas, que será mas fácil que enfocar sobre el planeta.

El mayor secreto de la fotografía de planetas es la desrotación. Capturar muchísimos datos. Ahora que existe la desrotación puedes capturar hasta 1 hora de datos, si las condiciones son malas y desrotar para obtenér buenos datos.

 

Captura de imágenes planetarias

 

Cada objeto, cada planeta tiene distintas configuraciones. Hay que encontrar el punto optimo para cada uno.

 

Cual es la guia que uso para obtener la Exposure y Gain? La guia que uso es el histograma.

 

Jupiter:

El nivel de histograma que uso es entre el 80 y 90%. Es lo maximo que debería estar. Si usas un histograma demasiado bajo, obtienes lo que se llama el "efecto piel de cebolla", donde los bordes del planeta parecen tener un defecto donde se ven distintas capas.

Ten cuidado con el tiempo de integración, porque Jupiter rota muy rápido. 1 vez cada 10 horas. Así que dependiendo de tu equipo, de la resolución que permita obtener, será el tiempo maximo que podemos capturar. Por ejemplo si tienes un C8, limita tu tiempo de captura a 1 minuto. En un C14 el está usando 30 segundos. No te preocupes, porque con la desrotación puedes capturar mas videos y obtener algo equivalente a un video de mayor duración.

Como Jupiter tiene lunas brillantes, úsalas para enfocar.

Si tienes el filtro de banda de metano, recomienda usarlo, porque tiene un valor científico muy alto. Muestra las nubes mas altas de Jupiter. Es un filtro de banda muy estrecha, así que la imagen será muy oscura. Debes usar bining para obtener una imagen util, y aún así la imagen tendrá mucho grano. Se usa un tiempo de exposición mas largo, aunque al usar bining estamos reduciendo la resolución, así que eso permite esos tiempos mayores. Con el C14 el captura hasta 2 minutos. Debes usar dark frames, ya que estás usando tiempos altos y mucha ganancia. El captura 5 imagenes y las apila para obtener el master dark para el procesamiento de la banda de metano.

 

Saturno:

Un problema es que tiene un brillo superficial muy bajo. Necesitas mucho tiempo de integración y usar desrotación. El invierte cerca de 1 hora para capturar a Saturno.

Por tener un brillo superficial muy bajo, debes usar una ganancia muy alta. El componente de Azul es muy bajo, así que tienes que usar un framerate diferente para el canal BLUE comparado al RED o GREEN.

El histograma también entre el 80 y 90%.

 

Marte:

Es el planeta mas fácil de capturar, porque tiene un brillo superficial muy alto, rota muy lentamente y en ciertos años se ve enorme.

El histograma también entre el 80 y 90% en RED y GREEN, y un 70% para BLUE.

Cuando captures el BLUE, no deben haber detalles de la superficie, porque de haberlos, significa que ese filtro azul está dejando pasar IR. Con el filtro azul en Marte deberías ver solo las nubes.

Rota muy lento, en forma similar a la Tierra, así que puedes capturar hasta 4 minutos.

Asegurate de que tus filtros bloquean UV e IR, o tendrás dificultades para capturar detalles en las nubes de Marte.

 

Captura muchos datos, en especial cuando el seeing o la transparencia no son buenos, porque la desrotación es lo unico que puede salvar tus datos en estas circunstancias.

Cuando el seeing es bueno, el captura 3 a 4 imagenes de Jupiter y Marte, y 15 de Saturno.

Si el seeing es malo, el captura 10 a 15 imagenes de Jupiter y Marte.

 

Procesado de foto planetaria (I)

 

El flujo de trabajo sería:

 

  • Apilado con AutoStakkert
  • Sharpening inicial con wavelets en Registax
  • Alineación RGB en Photoshop
  • Desrotación con Winjupos
  • Sharpening final y mas procesamiento con Photoshop

Autostakkert requiere mucha potencia de procesamiento, debido a los calculos complejos que tiene que realizar. Es el software que mejor apilado da. Un detalle es que sólo acepta videos AVI o SER sin compresión.

Abrimos la imagen, presionamos el botón "Place AP Grid" para que aparezcan los puntos de alineacion [noten que AP Size en ocasiones hay que variarlo, ya que si la imagen es chica y le dejan el valor que se ve en el video, no va a detectar nada]. Luego hay que elegir que % se va a apilar (son 4 recuadros, se usa el que está mas a la izquierda). El valor a ingresar depende de la calidad de las imagenes. En el caso del video eran de muy buena calidad, así que puso 80%.

Seleccionar 1.5x Drizzle. Esto aumenta el tamaño de la imagen, usando un algoritmo que aprovecha el movimiento propio entre tomas.

En Image Stabilization, seleccionar "Planet" y marcar "Dynamic Background".

En Quality Estimatior, seleccionar "Gradient".

Ahora presionamos "Stack". Este proceso demora mucho tiempo. Al finalizar, nos guarda automaticamente el archivo (.TIF, aunque podríamos seleccionar otro formato, pero no es necesario).

 

Abrimos Registax. Es importante que lleguemos a valores correctos de wavelets, porque con ellos puedes obtener una imagen perfectamente nitida. De otra forma, podría resultar en una imagen demasiado dura o demasiado borrosa.

Primero hacemos click en Select para abrir el archivo.

Ahora vamos a la pestaña Wavelet, y elegimos los valores que querramos. Esto es prueba y error. En el video se pueden ver los parámetros que usó Christopher para esa imagen, y para el equipo que usa.

 

Si tenemos una camara monocromática, ahora abrimos Photoshop para hacer la alineación RGB. Primero abrimos el archivo BLUE, el GREEN y el RED. Si los archivos están en formato color, hay que convertirlos a escala de grises ("grayscale"). Luego vas a Canales, abres el menú con el pequeño icono con el triangulo hacia abajo y las barritas horizontales (v=) y elegimos Combinar Canales ("Merge Channels") y elegimos RGB. Asegurate de que el RED, GREEN y BLUE indiquen los archivos correctos, presionar Ok y ahora tenemos una imagen a color. Pero la alineación de canales veremos que no es perfecta. Tenemos que usar la herramienta Mover, seleccionar el canal que queremos mover, y moverlo con las teclas del cursor, hasta lograr que los 3 coincidan.

Finalmente guardamos el archivo, haciendo click sobre el nombre del archivo GREEN, y cambiando la G en el nombre del archivo, por una C (la letra C significa "Color"). Es importante este paso, porque así WinJupos tiene la hora correcta.

 

Desrotaciones con Winjupos (y procesamiento final)

 

Ahora abrimos WinJupos. Este programa tiene una característica llamada desrotación, que es una de las herramientas mas poderosas en fotografía planetaria.

La desrotación permite apilar imágenes mas allá de los límites de rotación del planeta. Es una herramienta muy potente, porque con mas datos puedes ser mas agresivo con el sharpening y la reducción de ruido. 

El primer paso de la desrotación se llama Medida de Imagen, para esto vamos a Recording y luego Image Measurement. Luego eliges Open Image, y abres la imagen a color. Lo primero que ves es este patrón sobre Jupiter (porque la imagen que usa es de Jupiter, si no se vería un patrón diferente).

No es necesario ingresar la fecha y hora, si usaste el formato de archivo compatible con WinJUPOS.

Lo siguiente es alinear el patrón sobre el planeta. En Jupiter es fácil, sólo tienes que presionar F11 y el patrón se alinea automáticamente, pero asegúrate de que el patrón esté alineado con las bandas y zonas de Jupiter. Así que vuelves a la pestaña Imag. y elijes Save para guardar el archivo .IMS. Este es el archivo de Medida de Imagen. Tienes que hacer esto en todas las imagenes que quieres desrotar.

Una vez que terminas con la Medida de Imagen de todos los videos, vas a Tools -> De-rotation of Images. Lo primero aquí es ir a Edit -> Add y agregas todos los videos.

Tienes que elegir el formato para guardarlo. Christopher por lo general usa TIFF (48 bit). La orientación de la imagen es North at Top.

Hay una característica llamada Limb Darkening (la columna que dice LD value). Nos dice que va un valor de 0.6 ó 0.7 para evitar que aparezca un borde brillante alrrededor del planeta.

Ahora presionar el botón Compile Image y esto desrotará la imagen.

 

Ahora realizamos el procesado final con Photoshop. También necesitamos un software especial para sharpening. El que sugiero usar es Nik Collection, que ahora lo hace DxO. Y además un software de reducción de ruido que se llama Topaz Labs Denoise.

Lo primero es abrir el archivo en Photoshop, y abrir la imagen final desrotada (en el video se ve que tiene una F en el nombre de archivo, donde otros archivos tienen R, G, B, ó C). La imagen en particular del video se vé bastante oscura, así que podémos ajustar los Niveles, básicamente moviendo el nivel de blanco hacia la izquierda todo lo que sea necesario.

Antes de aplicar sharpening, debes ir a Filtros -> Ruido -> Destramar ("Despeckle"). Este filtro reduce las distorsiones que el sharpening podría exagerar.

Luego vamos a Nik Collection, donde normalmente usa Output Sharpener. Elijes una parte de la imagen para previsualizar el cambio. Normalmente usa unos settings que muestra en el video. Una vez satisfecho, presionas Ok.

El problema es que la imagen se vé algo ruidosa, así que vamos a Filtros -> Topaz Labs Denoise. Normalmente usa un valor de 6, pero puedes probar otros valores. Con este software, el ruido desaparece, pero la nitidez de la imagen no cambia.

Así que ahí lo tienes! Una imagen nitida y libre de ruido de Jupiter.

 

Saludos

La cámara QHY 290 sirve para espacio profundo también?  Saludos.

Enlace al comentario
Compartir en otros sitios web

muchas gracias  FSR !!!!!

supongo que será la misma cámara pero con y sin sistema de enfriado del chip,

supongo que debe servir sin problema para espacio profundo, pero con la limitación del campo pequeño,

saludos,

Enlace al comentario
Compartir en otros sitios web

De nada. Es que me puse a tomar notas de los videos y al final terminé transcribiendo casi todo lo que dice :D

 

hace 10 horas, Carlos Perdomo dijo:

La cámara QHY 290 sirve para espacio profundo también?  Saludos.

Ni idea, yo no tengo ninguna de ese estilo.

Supongo que dependerá de que quieras capturar, porque es chiquita, o sea que vas a tener un campo de visión chico y muchos objetos van a ser mas grandes. Tampoco tiene mucha resolución: 2 MPx. QHY la vende como "Planetary and Deep Sky" en su versión refrigerada (pero dentro de la categoría "entry level" de las refrigeradas, sin dudas por el sensor chico): http://www.qhyccd.com/QHY290.html

Mientras que su versión sin refrigeración está en la categoría de Guider/Planetary: http://www.qhyccd.com/QHY5III290.html

 

hace 37 minutos, vayserk dijo:

Alguien me puede orientar a que se refiere con que lo usa entre el 80 y 90%?

Se refiere que el valor maximo capturado tiene que estar entre el 80 y el 90% del maximo absoluto del sensor. Parece que FireCapture te muestra exactamente en que % estás, como indica la flecha en esta imagen:

 

ChrisGo_Histogram.thumb.jpg.45ac3fd3168052e36dd16e1a479d3736.jpg

 

 

  • Thanks 2

Fernando

Enlace al comentario
Compartir en otros sitios web

Gracias FSR por el resumen, muy bueno y los videos de Chris tambien.

20210131_005943.jpg.8fd3f40f9db4dc0586fe0f827bb6ed16.jpg  Saludos y buenos cielos!!!!

 

 

 

 

Enlace al comentario
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.


×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo