Jump to content

Novedades sobre el Event Horizon Telescope y los Agujeros Negros Supermasivos


APX808

Publicaciones recomendadas

Muy buen material Albert, creo que al fin estoy empeazando a entender algo de este tema.

 

Gracias!

Enlace al comentario
Compartir en otros sitios web

"Propiedades multilongitud de onda de banda ancha de M87 durante la campaña Event Horizon Telescope 2017". Este es el título de un artículo recién publicado en The Astrophysical Journal Letters en el que aparece esta imagen que a mi me parece espectacular:

 

M87_multiwavelength.png.e0604f8007da634af263dc7cde59d33e.png

 

Son imágenes de M87 en todas las longitudes de onda, desde ondas de radio λ=100 metros, hasta rayos gamma λ=1E-20 metros.

 

La inmensa atracción gravitacional de un agujero negro supermasivo puede impulsar chorros de partículas que viajan casi a la velocidad de la luz a través de grandes distancias. Los chorros de M87 producen "luz" que abarca todo el espectro electromagnético, desde ondas de radio hasta luz visible y rayos gamma. Este patrón es diferente para cada agujero negro. La identificación de este patrón brinda información crucial sobre las propiedades de un agujero negro, por ejemplo, su giro y producción de energía, pero es un desafío porque el patrón cambia con el tiempo.

Los científicos compensaron esta variabilidad coordinando observaciones con muchos de los telescopios más poderosos del mundo en tierra y en el espacio, recolectando "luz" de todo el espectro. Estas observaciones de 2017 fueron la campaña de observación simultánea más grande jamás realizada en un agujero negro supermasivo con jets.

 

Tres observatorios participaron en la campaña histórica: el Submillimeter Array (SMA) en Hilo, Hawaii; el Observatorio espacial de rayos X Chandra; y el Very Energetic Radiation Imaging Telescope Array System (VERITAS) en el sur de Arizona.

 

Comenzando con la imagen ahora icónica del EHT de M87, un nuevo vídeo lleva a los espectadores a un viaje a través de los datos de cada telescopio. Cada cuadro consecutivo muestra datos en muchos factores de diez en escala, tanto de longitud de onda de luz como de tamaño físico.

 

La secuencia comienza con la imagen de abril de 2019 del agujero negro. Luego se mueve a través de imágenes de otros conjuntos de radiotelescopios de todo el mundo (SMA), moviéndose hacia afuera en el campo de visión durante cada paso. A continuación, la vista cambia a telescopios que detectan luz visible, luz ultravioleta y rayos X (Chandra). La pantalla se divide para mostrar cómo estas imágenes, que cubren la misma cantidad de cielo al mismo tiempo, se comparan entre sí. La secuencia termina mostrando lo que los telescopios de rayos gamma en el suelo (VERITAS), y Fermi en el espacio, detectan desde este agujero negro y su chorro.

 

 

Cada telescopio ofrece información diferente sobre el comportamiento y el impacto del agujero negro de 6500 millones de masas solares en el centro de M87, que se encuentra a unos 55 millones de años luz de la Tierra. Los datos fueron recopilados por un equipo de 760 científicos e ingenieros de casi 200 instituciones, que abarcan 32 países o regiones, y utilizan observatorios financiados por agencias e instituciones de todo el mundo. Las observaciones se concentraron desde finales de marzo hasta mediados de abril de 2017.

 

La combinación de datos de estos telescopios y las observaciones actuales (y futuras) de EHT permitirán a los científicos llevar a cabo importantes líneas de investigación en algunos de los campos de estudio más importantes y desafiantes de la astrofísica. Por ejemplo, los científicos planean utilizar estos datos para mejorar las pruebas de la teoría de la relatividad general de Einstein.

 

Y una noticia importante:

 

La publicación de este nuevo tesoro de datos coincide con la campaña de observación de 2021 del EHT, que aprovecha una gama mundial de antenas de radio, la primera desde 2018. La campaña del año pasado 2020 se canceló debido a la pandemia de COVID-19, y el año anterior 2019 se suspendió debido a problemas técnicos imprevistos. Esta misma semana, durante seis noches, los astrónomos del EHT apuntan a varios agujeros negros supermasivos: el de M87 nuevamente, el de nuestra galaxia Sagitario A *, y varios agujeros negros más distantes. En comparación con 2017, la matriz se ha mejorado al agregar tres radiotelescopios más: el Telescopio de Groenlandia, el Telescopio Kitt Peak de 12 metros en Arizona y el Sistema Milimétrico Extendido NOrthern (NOEMA) en Francia.

 

El documento científico es Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign, observad que permite descargar el PDF gratis.

 

Saludos.

  • Like 1
  • Thanks 1
Enlace al comentario
Compartir en otros sitios web

En 23/9/2019 a las 11:11, AlbertR dijo:

(**) "Nuestra propia Vía Láctea es sede de un agujero negro supermasivo Sgr A* que evoluciona intensamente en el transcurso de una sola noche. Estamos desarrollando nuevos métodos, que incorporan ideas emergentes del aprendizaje automático y la imagen computacional, para hacer las primeras películas de la espiral de gas en movimiento que rodea el horizonte de sucesos", dice la Dra. Katie Bouman

 

(**) Entiendo que este debe ser el motivo por el cual EHT ha podido publicar la imagen de M87* y no ha publicado una de Sgr A*: el intento de foto de Sgr A* le está saliendo “movida

M87* tiene una masa de 6000 millones de masas solares, es por lo tanto muy grande y cerca de su horizonte de sucesos las cosas pasan aun lo suficientemente despacio como para que a lo largo de varios días de observación los datos correspondan prácticamente a la misma silueta del entorno de horizonte de sucesos, por ello las observaciones se pueden “sumar” y reforzar, pues corresponden a prácticamente la misma imagen "quieta"

 

En cambio, Sgr A* tiene solo 4 millones de masas solares, por lo que es mucho más pequeño y su entorno se mueve tan deprisa, que las observaciones de un día, (que no son suficientes para generar una imagen) no se pueden componer fácilmente con las imágenes del día siguiente, ya que el entorno "se ha movido”...

 

¿Habrán conseguido finalmente "neutralizar" la "borrosidad" que producían en las imágenes los cambios rápidos en el entorno de SgrA*? Es posible que lo sepamos el próximo 12 de mayo:

Asunto: EHT anunciará resultados innovadores sobre el centro de nuestra galaxia. La Fundación Nacional de Ciencias de EEUU conjuntamente con Event Horizon Telescope Collaboration realizará una conferencia de prensa para anunciar un descubrimiento innovador en la Vía Láctea.

Lugar: The National Press Club, 529 14th St NW, Washington, DC, 20045. El evento también se transmitirá en vivo en línea.

Quién: Inicialmente la Directora de Operaciones de NSF, Karen Marrongelle, pronunciará un discurso de apertura. A continuación un panel de investigadores del Event Horizon Telescope, o EHT, presentará sus hallazgos y responderá a las preguntas de los medios:

  • Katherine (Katie) L. Bouman, profesora asistente de Computación y Ciencias Matemáticas, Ingeniería Eléctrica y Astronomía en Caltech
  • Vincent Fish, científico investigador del Observatorio Haystack del MIT
  • Michael Johnson, astrofísico del Centro de Astrofísica | Harvard y Smithsonian
  • Feryal Özel, profesor de astronomía y física en la Universidad de Arizona

Cuándo: jueves 12 de mayo de 2022 a las 13:00 TU.


Seguiremos atentos, saludos.

 

Editado por AlbertR
  • Like 5
  • Thanks 1
Enlace al comentario
Compartir en otros sitios web

Los estudios científicos (10 en total) sobre la obtención de las imágenes de Sgr A* por parte del EHT acaban de ser publicados en The Astrophysical Journal Letters, este es el enlace para acceder a ellos, son gratis: Focus on First Sgr A* Results from the Event Horizon Telescope

 

Saludos.

  • Like 2
  • Thanks 3
Enlace al comentario
Compartir en otros sitios web

Roberto W

¡Buenísimos los videos! Muy bien explicados.

Gracias por compartirlos.

 

Saludos y buenos cielos, Roberto.

Enlace al comentario
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.

×
×
  • Crear nuevo...