Jump to content

Anomalías para pensar


Miguel L

Publicaciones recomendadas

Para tener en cuenta, "la densidad del vacio a la longitud de Plank, tiende a infinito", y varias otras anomalias "normalizadas"...

 

Saludos.

 

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Perdon, no lo puedo editar para corregir, pero por algun error (mio), el video comienza por la mitad, (se puede retroceder), pero por las dudas va de nuevo.

 

  • Like 1
Enlace al comentario
Compartir en otros sitios web

pucha no me puedo acordar como se llama este tipo , un amigo siempre me mostraba sus videos

(toca todo tipo de temas , desde lo compartido en el video del post , hasta teorias de como se construyeron las piramides , y etc.)

 

Soy un poco esceptico al respecto de sus teorias, pero no lo descarto por completo

 

 

Editado por clear
Enlace al comentario
Compartir en otros sitios web

Hola,

 

No se que significa la frase que mencionas "la densidad del vacio a la longitud de Planck, tiende a infinito"....

 

¿La densidad de que? ¿Cuál vacío?

 

Me alcanzó escuchar 20 minutos para darme cuenta que si este personaje leyó como dice el libro Gravitation, yo soy Gardel.

Abusa de la pobre gente que no tiene formación científica para decir cualquier cosa. Y cuando digo cualquier cosa, me refiero a decir cosas que NO son las que ese libro dice. Y sostiene afirmaciones que probadamente no son como las enuncia.

 

En fin.....

 

Saludos!

 

 

On 12-09-2017 at 21:23, Miguel L dijo:

Para tener en cuenta, "la densidad del vacio a la longitud de Plank, tiende a infinito", y varias otras anomalias "normalizadas"...

 

Saludos.

 

 

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Si tal vez, la intension del post era la de llamar la atencion sobre este tipo de afirmaciones, lo mas "parecido" que encontre fue:

Cita

Cada centímetro cúbico del vacío electrodébil contiene una gran energía y, gracias a la relación masa-energía de Einstein, una enorme masa de aproximadamente diez mil trillones de kilogramos (1022, más o menos, la masa de la Luna). El vacío unificado tendría la pasmosa densidad de 1051 kilogramos por centímetro cúbico.

Vacío cuántico - Wikipedia, la enciclopedia libre

https://es.wikipedia.org/wiki/Vacío_cuántico

 

Vacío cuántico

En la Teoría cuántica de campos, el vacío cuántico (también llamado el vacío) es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término "Energía del punto cero" es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.

De acuerdo a lo que se entiende actualmente por vacío cuántico o "estado de vacío", este "no es desde ningún punto de vista un simple espacio vacío",1 y otra vez: "es un error pensar en cualquier vacío físico como un absoluto espacio vacío."2 De acuerdo con la mecánica cuántica, el vacío cuántico no está realmente vacío, sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan dentro y fuera de la existencia.345

Según las modernas teorías de las partículas elementales, el vacío es un objeto físico, se puede cargar de energía y convertir en varios estados distintos. Dentro de su terminología, los físicos hablan de vacíos diferentes. El tipo de partículas elementales, su masa y sus interacciones, están dados por el vacío subyacente. La relación entre las partículas y el vacío es similar a la relación entre las ondas del sonido y la materia por la que se propagan. Los tipos de ondas y la velocidad a la que viajan varía dependiendo del material.

Nosotros vivimos en el vacío de menor energía, el vacío verdadero. Los físicos han hecho acopio de muchos conocimientos sobre las partículas que habitan ese tipo de vacío y las fuerzas que actúan entre ellas, a saber: la fuerza nuclear fuerte, la débil y la electromagnética. En otros vacíos, las propiedades de las partículas elementales pueden ser muy distintas. No sabemos cuántos tipos de vacío existen, pero la física de partículas sugiere que, aparte del nuestro, el vacío verdadero, hay por lo menos otros dos más y en ambos, ni entre las propias partículas ni en las interacciones hay tanta simetría y diversidad.

El primero de esos vacíos es el vacío electrodébil. En él, las interacciones electromagnética y débil poseen la misma fuerza y se manifiestan como partes de una sola fuerza unificada. En este vacío, los electrones tienen una masa igual a cero y no se los puede distinguir de los neutrinos. Se mueven a la velocidad de la luz y no se vinculan a ningún núcleo para formar átomos. En tales condiciones, por supuesto, ése no puede ser el tipo de vacío en el que vivimos. El otro vacío es el que postula la teoría de la gran unificación. En él, los tres tipos de interacciones entre las partículas están unificadas en un estado simétrico en el que los neutrinos, los electrones y los quarks, son intercambiables. Se puede decir casi con toda certeza que el vacío electrodébil existe, pero este otro vacío es más especulativo. Las teorías que predicen su existencia son muy atractivas, pero requerirían de energías extraordinariamente elevadas de las cuales hay indicios escasos y muy indirectos. Cada centímetro cúbico del vacío electrodébil contiene una gran energía y, gracias a la relación masa-energía de Einstein, una enorme masa de aproximadamente diez mil trillones de kilogramos (1022, más o menos, la masa de la Luna). El vacío unificado tendría la pasmosa densidad de 1051 kilogramos por centímetro cúbico. No hace falta aclarar que estos vacíos nunca se han sintetizado en ningún laboratorio porque para eso se requerirían energías que exceden con mucho la capacidad técnica de los laboratorios actuales. Por comparación con estas enormes energías, la del vacío verdadero, normal, es minúscula. Durante mucho tiempo se pensó que era exactamente igual a cero, pero observaciones recientes indican que nuestro vacío tiene una pequeña energía positiva equivalente a la masa de tres átomos de hidrógeno por metro cúbico. De los vacíos de elevadas energías se dice que son falsos – a diferencia de nuestro vacío, que es el verdadero – porque son inestables. Al cabo de un período de tiempo muy breve – normalmente una fracción de segundo –, un vacío falso se descompone y se convierte en un vacío verdadero y su exceso de energía se transforma en una bola de fuego de partículas elementales.

 

https://es.wikipedia.org/wiki/Vacío_cuántico

Saludos.

Enlace al comentario
Compartir en otros sitios web

Invitado
Este tema está cerrado a nuevas respuestas.
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.

×
×
  • Crear nuevo...