Jump to content

Sobre los algoritmos de debayerización (revelado RAW)


jwackito

Publicaciones recomendadas

Excelente explicación a un tema que todos los que hacen fotografía deberían considerar leer tu post. Por esta razón software como el pixinsight, nebulosity y otros traen rutinas de debayerizado (o bayerizado) para las imágenes de cámaras color.

Si bien es un tema técnico, te agradezco por traer estos temas al foro, son muy interesantes para sacarnos muchas dudas y entender todos los porque al momento de procesar una imagen. Gracias por compartir.

Saludos y buenos cielos!

iOptron CEM26EC
Askar ACL200
QHY600M, QHY183M, QHY5III462C

Garin - Buenos Aires - Argentina

Duoptic - Espacio Profundo
Mi Galeria de Fotos

Enlace al comentario
Compartir en otros sitios web

Hola:

Gracias por publicar este excelente trabajo. Pretigia a EP...

Veré como lo puedo ir atacando, de a poco, para tratar de entender algo...

Saludos RGF

Enlace al comentario
Compartir en otros sitios web

Muy buena información y además bien explicada. Aunque no hago fotos, me parece muy interesante para ir comprendiendo de a poco este apasionante mundo de la fotografía.

Saludos.

Enlace al comentario
Compartir en otros sitios web

Hola a todos. Gracias por comentar. La intensión del post no era que salgan entendiendo como funcionan los algoritmos sino más bien introducir el tema como para saber que esperar de cada método, saber que existen y sobre todo para ver si despertaba el interés de los foreros por saber.

Como veo que hay interés, voy a ver si armo alguna explicación más detallada de los métodos particulares, de nuevo, a modo introductorio. Muchas de las cosas que vi durante mis lecturas me pasaron por arriba ya que van mucho más allá de mis conocimientos de álgebra lineal.

Si bien son temas técnicos como dice Ricardo, también me parece muy importante saberlos (aunque sea saber que existen) para aquellos que hacemos astrofotografía.

Saludos y buenos cielos.

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Enlace al comentario
Compartir en otros sitios web

Que bueno Juaquito, que compartiste esta info, ya que es un tema muy relevante para los que hacemos fotos con cámara color. En su momento los investigué, y coincido que el método VNG pueda ser el más adecuado para lo nuestro, aunque existen un montón más (algunos muy sofisticados/complejos), por ejemplo AHD (incluido en DSS) que también da buenos resultados.

El tema es que todos éstos métodos son desarrollados y evaluados para fotografía diurna normal, donde se hace una sola toma con buen nivel de señal. En astrofotografía, hacemos muchas tomas, que por lo general están algo desplazadas unas de otras (por dithering, flexión diferencial, etc.), por lo que es probable que cada color RGB sea muestreado una cantidad de veces en cada punto espacial, y que en principio no haga faltar interpolar.

Esto es lo que hace el Bayer Drizzle de DSS (ver http://www3.asiaa.sinica.edu.tw/~whwang ... index.html ), aunque por lo general no obtengo buenos resultados con el DSS (comparado con Pixinsight, en lo que hace a calibración y apilado).

Hace rato que estoy en contacto con los desarrolladores de Pixinsight, tratando de convencerlos que incluyan un método de éste tipo, que evita la interpolación. Dicen estar trabajando en eso, en una forma todavía más amplia, llamada genéricamente "super resolución".

saludos

Ignacio

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Que bueno que sacaste el tema de superresolución Ignacio. Ahora escribo algo sobre eso. Hay un método mejor que el Adaptive Homogeneity-Directed, desarrollado por Lanlan Chang y Yap-Peng Tan (indonesios) y que lleva su nombre (Chang Tan). Se trata de un método híbrido que mejora la relación señal ruido (más precisamente la Peak Signal-to-Noise Ratio) a pesar que tiene más o menos la misma complejidad computacional en cuanto a operaciones por pixel. No encontré el paper en el quilombo de carpetas que tengo, pero si te interesa lo busco y te lo paso o lo subo al foro.

Abrazo y gracias por comentar.

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Creo haber leído de ese método. Subilo.

La idea de debayerizar y apilar al mismo tiempo, optimizando la reconstrucción de la imagen (superresolución), esta bien explicada en éste paper (en inglés y bien técnico): http://people.duke.edu/~sf59/TIP_Demos_Final_Color.pdf

Entiendo que los de PI están trabajando con esa idea.

slds

Ignacio

Enlace al comentario
Compartir en otros sitios web

Si, lo tengo estudiado a ese paper. Pero todavía no termino de entender como escribir algunos de los operadores. Acá se ataca el problema de la debayerización y de la superresolución como dos instancias particulares de un mismo problema que se venia atacando por separado, ya que en métodos anteriores, primero se debayerizaba y luego se aplicaban técnicas de superresolución a los canales por separado.

Este algoritmo interesante para imágenes astronómicas ya que en general no tenés rotación de campo u otras transformaciones en las imágenes, sino que solo están trasladadas en x o y, unas respecto de las otras. De otra forma, el método así descripto no podría aplicarse. Aunque sospecho que se puede generalizar para otras transformaciones además de la traslación.

Enlace al comentario
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.


×
×
  • Crear nuevo...