Jump to content
  • Técnicas de observación

    Detalle de algunas técnicas
    1. 1

      Como observar un eclipse lunar

      Existen dos tipos fundamentales: totales y parciales.    Un eclipse total de Luna es un fenómeno impresionante para aquellos que pueden observarlo con un buen cielo despejado. Las observaciones pueden ser realizadas con binoculares, o con un telescopio utilizando pocos aumentos. El borde de la sombra de la Tierra es difuso, y se hace tanto mas difuso cuanto mayor sea el aumento. El aumento adecuado es aquel en el que toda la Luna cabe dentro del campo del ocular.    En un eclipse total, nuestro satélite se encuentra por algún tiempo sumergido en su totalidad en el cono de sombra de la tierra. Pese a ello, la luna no desaparece por completo. Esto se debe a un efecto de refracción en nuestra atmósfera, y como la luz roja refracta mas que la azul muchos eclipses la Luna toma la coloración rojiza.   Pero el efecto anterior depende de las condiciones atmosféricas de aquellas zonas de la tierra donde los rayos solares son refractados: los lugares donde amanece y anochece en el momento del eclipse. Y además, de la pureza de las capas superiores de la atmósfera, las cuales en ocasiones están contaminadas con polvo cósmico o terrestre.   Se sabe, por ejemplo, que en el eclipse de luna de 16 de junio de 1816, la luna desapareció por completo. La razón era que en la primavera de 1815, el volcán Tambora, de la Isla de Sumbawa, en Indonesia, había explotado, lanzando a la atmósfera, unos 150 Km. cúbicos de cenizas. ¡Una de las mas grandes explosiones de la historia!.   A diferencia de los eclipses totales, en los parciales siempre queda iluminada una parte de nuestro satélite   Para observar los eclipses de Luna, no existe ningun peligro para los ojos.   Es posible registrar estos fenómenos en video, sin telescopio. Es importante dar a la cámara un buen aumento, necesario para que sea de un tamaño interesante. La observación es ideal realizarla a traves de binoculares, a simple vista o con telescopio, este ultimo con el minimo aumento posible.   Visita nuestro foro sobre eclipses lunares en http://www.espacioprofundo.com.ar/forum/22-eclipses/    
    2. 2

      Observación de Cometas - Guía para reportes visuales de observación de cometas

      Los cometas son cuerpos celestes formados por hielo y roca que viajan desde los confines de nuestro Sistema Solar, algunos con órbitas muy excéntricos (hiperbólicos) denominados de “largo período” Se distinguen de los asteroides, entre otras cosas, por poseer material que se volatiliza o sublima al aproximarse a su perihelio (distancia mínima al Sol)         En algunas afortunadas ocasiones se convierten en espectaculares objetos observables a simple vista. Alcanzan su máximo brillo cuando se hallan a su mínima distancia del Sol, o algunas semanas antes, por ello, suelen observarse siempre a no mucha altura sobre el horizonte al amanecer o al anochecer. Provienen de dos regiones distintas: La nube de Oort (50000 /100000 UA)Cinturón de Kuiper (mas allá de la órbita de Neptuno) Asteroides y cometas viajan por nuestro sistema solar sufriendo “perturbaciones” en sus órbitas debido al acercamiento con otros objetos (planetas, estrellas, etc..) como consecuencia, siempre aparece alguno de “visita” por primera vez trayendo consigo , con un poco de suerte, un buen espectáculo para disfrutar y una buena oportunidad para aprender mas sobre éstos fascinantes objetos. Otros, repiten de manera mas frecuente su visita, son éstos los cometas de corto período. No es mi intención dar información general sobre estos objetos, la cuál hay mucha y muy buena disponible en la web. Más bien es acercarlos y entusiasmarlos a realizar observaciones visuales y/o fotográficas con el objetivo de hacer estimaciones de brillo, diámetro de la coma del cometa, largo de su cola y mediciones de sus posiciones (astrometría) Partes de un cometa Núcleo: no observable a causa de la coma Coma: envoltura de gases polvo Cola de gases: se desarrollan en línea recta Cola de polvo: pueden observarse curvadas por efecto de la gravedad Las aparición de una o dos colas dependen de la composición del cometa, no siempre se generan ambas. 1. Nombre del cometa/fecha hora de la observación en UT2. Brillo de la coma (M1)3. Tamaño angular o diámetro de la coma (Dia)4. Grado de condensación de la coma (DC)5. Longitud de la cola, si es que tiene (Tail)6. Angulo de posición de la cola (AP)7. Instrumento utilizado8. Nombre y ubicación del observador   Ejemplo punto “1”: C/2013 R1 (Lovejoy) 2013-10-26 02:35UT   Es muy usado y mas recomendable usar la fecha de observación en formato de fracción de día …esto se hace así: las 0hs. UT suceden en nuestro país a las 21hs. Entonces desde las 21 hasta las 2:35 am pasaron 5hs35min. Esto lo convertimos así: 35min/60min=0,58hs entonces las 5:35 nos quedan en 5,58horas. Sólo resta dividir por 24hs para que nos quede la fracción de un día completo: 5,58hs./24hs= 0,23dia. La fecha nos queda así: 2013 Oct. 26,23 UT Brillo de la coma (M1) La estimación se hace de manera similar al de las estimaciones de brillo de estrellas variables. Se eligen dos estrellas que estén por encima y por debajo del brillo del cometa. Como para iniciarnos podemos usar los catálogos generados por la AAVSO también el Tycho. (hay muchos más) No usar estrellas catalogadas como rojas o que sean variables! Comencemos: .Método (B) Bobrovnikoff, o “fuera_fuera”: (El mas utilizado para cometas brillantes ) Elegimos una estrella mas brillante que el cometa y otra más débil (A y B respectivamente) Desenfocamos los tres objetos, estrellas y cometa. En una escala de 1 a 9 determinamos cuanto se perece el cometa a la estrella mas brillante y cuánto a la mas débil. A, a, Mv, b, B a+b= debe dar como resultado siempre 10. A: para la estrella mas brillante. B: para la más débil. Mv: magnitud visual del cometa. A=5mag. B=6.5mag. Observamos que el brillo de la coma se asemeja mas a la estrella de mayor brillo“A” le otorgamos a “a” un valor de “2” por lo tanto “b” será igual a “8” (recordar que a+b=10 siempre..) La formula es: Mv= A+[ (a)/(a+b) ]. (B-A) Mv= 5+ (3/10).(1,5) Mv= 5+(0,3.1,5) Mv= 5+ 0,45 Mv= 5,45mag. Método (S) Sidwick o “adentro_afuera”: Es utilizado cuando el cometa no es lo suficientemente brillante como para emplear el método anterior de desenfoque.   Seleccionamos dos estrellas de catálogo de magnitud conocida Memorizamos el brillo del cometa en su foco correcto o normal. Desenfocamos la estrellas de referencia hasta que las veamos lo mas parecido posible al cometa en foco. Comparamos el brillo de las estrellas des enfocadas con el brillo del cometa.   Para obtener la estimación hay que seguir los mismos pasos que en el método anterior. Existen dos métodos más (Método de Morris (M)y Método de Beyer (E) algo mas complejos y que aún no he usado nunca. Los dos explicados en esta guía son los mas utilizados. Diámetro de la coma (Dia) Para esta medición lo ideal es un ocular con retículo graduado, pero la gran mayoría de nosotros que no contamos con este accesorio, existen tres métodos igualmente válidos: Usando un ocular normal: si bien el menos preciso, al momento de emplearlo debemos conocer el campo angular que abarca el ocular. Calculamos a “ojo” y dividimos el tamaño de la coma del cometa en fracciones de campo angular (por ejemplo: si la coma ocupa un cuarto del campo del ocular, en un ocular de 1° grado de cielo, la coma del cometa tendrá 0,25° de diámetro angular. Usando una carta estelar : Aquí hay que ponerse a dibujar (en el buen sentido de la palabra) Dibujamos entonces la coma del cometa las estrellas mas cercanas, buscamos las coordenadas AR. y Dec. De las estrellas usamos esta fórmula: DA= ArcCos[senDec1. SenDec2+CosDec1.CosDec2.Cos(AR1- AR2)]   Medición por tránsito : Si bien este es el método mas trabajoso, es el más preciso. Necesitamos un ocular reticulado del cuál usaremos solo un hilo de éste que deberemos poner perpendicular al movimiento del cielo, o sea que las estrellas pasarán de derecha a izquierda del hilo, o viceversa. Ahora solo resta tomar el tiempo que tarda la coma del cometa en atravesar el hilo con un cronómetro. Ese tiempo “t” lo usamos en la siguiente fórmula:   Dia= (1/4)t.Cos (Dec)   Usamos el tiempo “t” en segundos “Dec” corresponde a la Declinación del cometa Condensación de la coma (DC) Ejemplos: 1 Coma difusa con luminosidad uniforme, sin condensación hacia el centro. 3 Coma difusa con luminosidad creciente gradualmente hacia el centro. 6 La coma muestra un pico de intensidad definida en el centro. 9 La coma parece un punto estelar. Medición de la cola del cometa (Tail) Si el cometa presenta cola de iones, o polvo, o ambas, sólo tenemos que utilizar el mismo método empleado para la medición de la coma  .Angulo de posición de la cola (PA) : Determinar el ángulo de posición de la cola : Sobre una carta celeste y midiéndolo con un transportador de ángulos. La medición debe efectuarse teniendo en cuenta que el Norte corresponde a un AP 0º y que se incrementa hacia el Oeste (270º). Instrumento utilizado El instrumento utilizado para hacer la observación de cometa se reporta de la siguiente manera: B: Binocular. Si se usó un 7X50, se reporta 7X50B. E: Ojo desnudo. L: Telescopio reflector. Colocando en diámetro en centímetros y los aumentos usados. 11.4cmL(45X) R: Telescopio refractor. S: Telescopio Schmidt-Newtoniano. T: Telescopio Schmidt-Cassegrain.   Ejemplo de reporte finalizadoC/2014 E2 (Jacques)2014 Mar13.25UT, M1=9.0 (S), Dia=5´, DC=3, 25X100B, Andrés Chapman, Buenos Aires, Argentina.  
    3. 3

      ¿Qué se puede ver en Júpiter?

      Los planetas externos que se encuentran mas allá de la Tierra, como Júpiter, presentan varios puntos importantes en su órbita con respecto a nuestro planeta: son la Oposición, la Conjunción y las Cuadraturas.La Oposición es la mínima distancia del planeta a la Tierra. Su tamaño es máximo en ese momento. En la Conjunción, el planeta esta del otro lado de la órbita, por lo que se ve más pequeño. Cabe recordar que en cualquiera de las dos posiciones el Sol ilumina la cara que vemos, por lo que los planetas externos no presentan fases muy notables. El único en las que son levemente notables es Marte. El momento cuando se observa la máxima fase de un planeta externo es en las cuadraturas.
      Las oposiciones de Júpiter se dan cada 1 año y un mes. Júpiter El quinto planeta desde el Sol, fue apropiadamente llamado con el nombre del Rey de los dioses.

      Este planeta es once veces mayor que nuestro planeta. La Tierra es casi la tercera parte del tamaño de la Mancha Roja.
      Júpiter esta a cinco veces nuestra distancia al Sol, causando que le tome casi 12 años en dar una vuelta alrededor del Sol, recibiendo solo 1/25 de la luz que nosotros recibimos.

      La atmósfera del planeta contiene 80% de hidrógeno, 20% de helio, mas pequeñas cantidades de metano y amoniaco. La naturaleza de su interior permanece mayormente desconocida. Igualmente se sabe que tiene un núcleo rocoso del tamaño de nuestro planeta, una capa importante de hidrógeno líquido-metálico, por encima una capa de hidrógeno molecular líquido, hasta llegar a las capas gaseosas visibles desde la Tierra. Tiene un clima muy violento con grandes vientos. Un huracán, llamado la 'Gran Mancha Roja' permanece desde la época de Galileo.
      Tiene cuatro satélites mayores, que pueden ser visibles con binoculares, llamados Io, Europa, Ganímedes y Calixto. Cada una tiene casi derecho de ser denominado un planeta. Ganímedes por ejemplo, es más grande que Mercurio. Posee docenas de otras lunas pequeñas.
      Tiene un campo magnético enorme, relámpagos, y un fino sistema de anillos.

      Algunos planetas como Júpiter, son tan grandes que emiten algo de energía de la que reflejan del Sol.  Esta es la principal razón por la cual la simple definición de planeta de 'objeto que refleja luz' no es correcta. ¿Como saber que parte se esta viendo de Júpiter? Medir la longitud de Júpiter (la longitud del meridiano que pasa por el centro del planeta en el momento de la observación se llama “Meridiano central”) es difícil de determinar por el hecho de que el planeta gira mas rápidamente cerca de su ecuador que en sus polos (por ser gaseoso).Por ello se usan tres sistemas referencia.El Sistema I es para todo aquello que esta dentro de los 10 grados del ecuador de Júpiter, donde la rotación es de 9 horas, 50,5 minutos.  El Sistema II es usado para las regiones al norte y al sur del anterior, como por ejemplo la Gran Mancha Roja), donde la rotación se produce en 9 horas,55,677 minutos.El Sistema III, está basado en como Júpiter gira en su interior; es usado en radio observaciones, y no es particularmente usado en observaciones visuales. Tiene un periodo de 9 horas, 55,495 minutos y representa la tasa de rotación de las zonas debajo de la capa de nubes.

      Este dato puede conocerse mediante el uso de software como el Cartes du Ciel.    Los satélites Jovianos Los satélites, por sus órbitas, muchas veces pasan delante, atrás o es ocultado por la sombra de Júpiter. Estos eventos son interesantes para observar, y se predicen para observarlos, ya que permiten corregir con gran precisión sus órbitas. Se denominan 'fenómenos mutuos'.   Io: Es el mas interno de los grandes satélites de Júpiter. Tiene casi el tamaño de la Luna de la Tierra y es uno de los cuatro grandes satélites Jovianos hallados por Galileo.La mayoría de lo que conocemos sobre Io viene de las sondas Voyager.Estas muestran un planeta geológicamente activo, completado con volcanes y una delgada atmósfera.Io esta tan lejos de Júpiter como la Tierra lo esta de su Luna. Desde Io, el diámetro de Júpiter podría aparecer como el de cuarenta lunas llenas. Europa: Es el mas pequeño de los cuatro grandes satélites de Júpiter hallados por Galileo.  Esta cubierto por una capa de hielo de polo a polo, con grandes grietas. Se ha pensado que es posible que algún tipo de vida podría formarse en el océano bajo el hielo, dada por alguna fuente interna de calor. Ganimedes: Es la mayor de los cuatro grandes satélites de Júpiter hallados por Galileo. Tiene una superficie extremadamente accidentada, cruzada por pliegues de origen incierto. Calixto: Es el mas externo de los cuatro grandes satélites de Júpiter encontrados por Galileo.  Posee una superficie con muchísimos cráteres, indicando una actividad geológica mínima. (Los volcanes podrían eliminar los cráteres, tal como hicieron en la Tierra.) Datos de Júpiter Tamaño: radio ecuatorial 71.492 km
      Distancia media al Sol 778.330.000 km
      Día: periodo de rotación sobre el eje 9,84 horas
      Año: órbita alrededor del Sol 11,86 años
      Temperatura media superficial -120 º C
      Gravedad superficial en el ecuador 22,88 m/s2  Nomenclatura de las nubes en Júpiter Las zonas son las regiones mas claras, los cinturones oscuras. Note que las regiones descriptas pueden estar ausentes o no muy definidas, y no siempre rodean totalmente al planeta.
        figure {display: block; padding: 10px; font-variant: small-caps; background-color: #304d66; text-align:center; color:white; width:100%; margin: auto;}   NPR: North Polar Region
      NNTZ: North North Temperate Zone
      NNTB: North North Temperate Belt
      NTZ: North Temperate Zone
      NTB: North Temperate Belt
      NTrZ: North Tropical Zone
      NTrZB: North Tropical Zone Band
      NEB: North Equatorial Belt
      NEBZ: North Equatorial Belt Zone (no siempre presente)
      EZ: Equatorial Zone
      EB: Equatorial Band (no siempre visible) SEB: South Equatorial Belt
      SEBZ: South Equatorial Belt Zone
      GRS: Great Red Spot
      STrZ: South Tropical Zone
      STB: South Temperate Belt
      STZ: South Temperate Zone
      SSTB: South South Temperate Belt
      SSTZ: South South Temperate Zone
      SSSTB: South South South Temperate Belt
      SSSTZ: South South South Temperate Zone
      SPR: South Polar Region   Otros objetos en la superficie ¿Que datos tomar para una observación? Aparte de los datos básicos de la foto  (cámara, exposición, stakeado, filtros)Es necesario agregar día, hora (al minuto), condiciones del cielo (nubes, luna, turbulencia) y todo dato que consideres que va a influir en el resultado final de la observación. ¿En que contribuir? Observación del tránsito de marcas superficiales, para el cálculo del período de rotación. Determinación de rotación y velocidad de 'corrientes atmosféricas'. Determinación de la latitud de las manchas. Observación con filtros y vigilancia del nacimiento, evolución y fin de perturbaciones en la SEB, como otras perturbaciones. Fotografía u observación con filtros. Detección de color, variación e intensidad. Algunos consejos. Usar telescopios refractores de al menos 6 cm o reflectores de 8 cm de diametro, a 100 x. Usar oculares de alta calidad. Hacer las fotos o dibujos en menos de 3 minutos, ya que de otra manera el planeta muestra una diferente zona. Lo ideal es que el planeta este lo mas alto posible sobre el horizonte.
×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo