Jump to content

Sistematizar el método de la deriva


javier ar.

Publicaciones recomendadas

Amigos, dejo un humilde aporte, espero que sea de utilidad para alguien que está encarando el método de la deriva. Como aclaro al principio, no tiene pretensiones de tutorial y es posible que haya errores teóricos, pero funciona perfectamente en la práctica.

Saludos!

Hay varias formas para hacer una alineación polar de nuestra montura, podemos hacerla con un software, o con un buscador polar o a través del método de la deriva utilizando un ocular reticulado iluminado.

Alinear el telescopio a través de este último método resulta muy fácil y es extremadamente preciso, pero al principio todas las explicaciones que andan dando vueltas por ahí pueden contradecirse entre si y generar cierta confusión. Se habla de muchas reglas nemotécnicas para saber hacia dónde corregir, pero muchas veces esas indicaciones no coinciden con lo que vemos en el ocular. Las primeras puestas en estación pueden ser un verdadero dolor de cabeza. Es una buena idea practicar con paciencia la puesta en estación de la montura antes de encarar nuestra primera sesión de fotos.

No está demás repasar algunas partes una montura ecuatorial estandar a traves de la imagen nº1

El método:

1.- Ajustamos los controles de altitud de nuestra montura para fijar la latitud de nuestra zona geográfica. Luego hacemos una primera alineación del eje AR hacia el Sur (o hacia el norte si estamos en el hemisferio Norte) con una brújula y nivelamos perfectamente el trípode. Si bien esta primera alineación es medio gruesa, tiene que ser lo suficientemente buena para no quedarnos sin rosca para corregir en azimut en las monturas que tienen movimientos finos (a partir de la eq3) (imagen 2)

2.- Luego, tenemos que elegir una estrella cercana a la intersección del meridiano y el ecuador celeste para hacer las correcciones en azimut. Este punto me generaba muchas dudas sobre la correcta ubicación. Una forma muy práctica de aproximarnos es girando el eje declinación orientando la boca del tubo hacia el este de manera que quede perpendicular al eje de AR. (imagen 3)

3.- Luego, giramos el eje AR hacia el meridiano, o sea hacia arriba., al estar en el hemisferio sur, el equipo nos queda con una inclinación hacia el Norte. Dejamos un poco de margen en la inclinación del tubo para asegurarnos de que la estrella no cruce el meridiano. (imagen 4)

4.- Usando un ocular reticulado (si es necesario en combinación con un barlow para superar los 120x y ver rápidamente la deriva) elijo una estrella que encuentre cerca de esa posición. Lo que tenemos que hacer es alinear un hilo del retículo con el movimiento de AR de la estrella. En mi caso, para hacer esto giro con el control fino el eje AR y con la mano voy girando el ocular para que el movimiento de la estrella camine sobre el hilo AR o vaya en paralelo a este. Si no tenemos embreague en la montura para usar el control fino (como en la eq3) o simplemente no tenemos disponibles controles finos como en las monturas con Go To, usamos los motores para alinear el movimiento de la estrella con la línea del ocular reticulado.

5.- Con la montura traccionando, colocamos la estrella sobre el hilo de AR y lo que hacemos es simple y práctico, la estrella se va a salir del hilo de AR (también va a caminar a través del hilo AR pero no le damos importancia a este movimiento ya que se debe al error periodico de la montura). Prefiero no usar arriba abajo izquierda derecha, simplemente se va. Tomo un periodo de tiempo, digamos de 2 minutos, y corrijo al azar con uno de los controles de azimut (si la deriva es rápida le damos una o dos vueltas) vuelvo a centrar la estrella (si la perdemos tomamos cualquier otra de la zona). Tomo de nuevo un periodo de dos minutos y me fijo que es lo que pasa. Si la estrella deriva hacia el mismo lado más rápido, corregí mal, si la estrella deriva hacia el mismo lado más lento, corregí bien pero me falta, si la estrella deriva hacia el otro lado, corregí bien pero me pasé.

Una vez identificado cual es la corrección de azimut que tenemos que hacer, miramos a través del ocular reticulado y hacemos un dibujo. En el dibujo tiene que figurar la posición del ocular reticulado, y la posición de la estrella. Acá hacemos todas las anotaciones convenientes para recordar que control tenemos que usar en caso de tal deriva.

En mi caso, con el focuser del reflector balanceado hacia abajo, el ocular reticulado me queda en la posición que muestra la imagen nº 5

Una aclaración importante: para que la sistematización del método sea efectiva, el telescopio tiene que estar balanceado siempre en la misma posición. De todas formas, el focuser de “costado” no es efectivo para el balance en los reflectores, para fotografía el focuser debe ir orientado hacia abajo.

Mi regla (cada cual hará la suya) es: deriva hacia la izquierda, corrijo con el control de azimut de la izquierda, o sea el que está del lado del oeste y viceversa. Lo bueno de esto es que para la próxima alineación, ya sabemos que hacer inmediatamente en cuanto tenemos una deriva, sin ubicar puntos cardinales ni tomar el tiempo. Esto acelera muchísimo el proceso y no hay lugar a la confusión.

Con respecto a cuanto corregir, se va viendo en la experiencia. Si la deriva es muy rápida, unas cuantas vueltas hay que darle seguro, sin miedo, si nos pasamos volvemos. También depende del aumento que estemos usando. Pero eso lo va aprendiendo cada uno con su equipo.

Para una buena puesta en estación, lo ideal es mantener la estrella sin deriva (sin que se salga del hilo AR, no importa que camine por el mismo) por 10 minutos, pero en la práctica se obtienen buenos resultados con tiempos menores mucho menores.

6.- Si ya logramos un buen ajuste en azimut, estamos listos para ajustar la altitud. Lo que hacemos es girar el eje AR hacia el este sin tocar el eje DEC y buscamos una estrella baja en el horizonte. (imagen 6)

No es necesario volver a alinear el movimiento de la estrella con el hilo AR, simplemente ubicamos la estrella sobre la línea de AR y observamos la deriva. Tomamos nota de la posición del ocular como lo hicimos con el meridiano. Yo siempre tengo una silla a mano cuando hago fotos que me permite realizar este paso sin hacer contorsiones.

Repetimos la operación de tomar el tiempo y creamos nuestras propias reglas nemotécnicas según la posición del ocular y la deriva de la estrellas.

Una vez que logramos 10 minutos sin deriva, volvemos al meridiano y controlamos la deriva en alguna estrella, es probable que al mover la latitud tengamos que hacer un pequeño ajuste en azimut. Esto se debe a que el nivelado de la montura rara vez es perfecto y los ejes interactúan entre si. Otros tantos minutos sin deriva en el meridiano y yo doy por terminada la alineación polar.

Espero que les sirvan estas notas sobre el tema. Los más entendidos encontrarán seguramente errores teóricos, pero en la práctica me ha servido a mi y a varios amigos perfectamente.

Buenos cielos!

6.jpg.10882f6fa9e7d63343c5433bbe85b7f8.j

deriva.jpg.a31ab8751285b1bc15ae0a3019918

4.jpg.01ab1aca096b1e39493ecc40c6ecd676.j

3.jpg.72d6318c38f8dd7b25dff89f7afc9b9f.j

2.jpg.8df2563ff7cd688f0f3bcb7ff56e901b.j

Montura.jpg.42db165ec126a20582f6fb7ee70a

Editado por Guest
  • Like 1
  • Thanks 2
Enlace al comentario
Compartir en otros sitios web

hola javi, la explicacion esta muy bien, el metodo es asi, la deriva que hay que parar o minimizar es la de declinacion que es debido a una mala alineacion polar o mala puesta en estacion, en cambio si hay derivas en el eje de a.r. es debido a la diferencia de velocidad que puede haber en el eje devido a la traccion del motor de a.r. pero eso se soluciona con autoguiado (en teoria)

cuando estas cerca de la interseccion del meridiano y el ecuador se corrige el azimut de la siguiente manera: hay que mover los controles finos de azimut de manera que la estrella se aleje aun mas para el ledo que derivo

y en el horizonte del este es al reves, tenes que mover los controles de latitud de manera que la estrella se acerque de nuevo hacia el centro del reticulo

saludos

Enlace al comentario
Compartir en otros sitios web

Gracias muchachos, ojalá le sirva a alguien.

Mati, esas indicaciones son las que me volvieron loco al principio, no sé si por las diferentes posiciones en que orinetaba el tubo. Por ejemplo, se suponía que tenía que "seguir la corriente" pero a veces al corregir la estrella salía disparada perpendicularmente hacia donde esperaba y no sabía que corregir. O la teoría del "beso", que pasa si por la posición en que tengo el ocular deriva hacia la izquierda o la derecha (como es mi caso actual) no sabía cual era subir y cual bajar. Probablemente haya aplicado mal esas teorías, pero me resultaron algo confusas.

Sebas, gracias por tus palabras, pero más bien soy bastante inepto para estas cuestiones, por eso toda la sistematización que me armé, a mucha gente no le hace falta.

Saludos!

Enlace al comentario
Compartir en otros sitios web

Excelente explicacion Javi!! quedo muy bien explicado y las fotos ayudan muchisimo.

En cuanto hacia donde corregir, varia dependiendo la posicion del OTA, tipo de ota, por lo que la primera vez va a ser prueba y error, darle una correccion importante y observar si la estrella se aleja mas rapido o no.

PD: gracias por el bautismo del metodo!, aunque los creditos como siempre digo son para el maestro Marcos Rodriguez y fer Mazzone que me enseñaron el sistema hasta que lo entendi :lol:

Enlace al comentario
Compartir en otros sitios web

Muy bien explicado Javier!

A mi también me resultaron confusas las explicaciones que se basaban en decir que había que corregir para la dirección que derivaba la estrella o viceverza pues como señalas suele ocurrir que cuando uno mueve los controles de azimut y altitud del telescopio las estrellas se mueven casi perpendicular a su deriva.

Lamentablemente hay pocos lugares en internet donde el método este explicado bien, o se hacen muchas complicaciones con el tipo de telescopio o directamente lo explican de manera incorrecta. Para mi, donde está explicado mejor es en:

http://www.cielosur.com/chava.php

es quizás un poco dificil de entender, pero es la verdad de la milanesa y se aplica a cualquier tipo de óptica.

Para saber en que dirección hay que corregir solo hay que indentificar en el hilo que va en la dirección norte-sur cual es el norte y cual es el sur. Eso se hace moviendo el telescopio por el control de DE llevandolo al teles, por ejemplo, hacia el Norte. Si hacemos eso mientras miramos por el ocular las estrellas se "moveran" hacia el sur por el hilo N-S. Así identificamos cual es el norte y sur. Lo ideal sería tener un ocular retículado con algún hilo marcado para identificar el norte.

Luego la regla es.

Para corregir el acimut (estrella en el meridiano): si la estrella deriva al sur del cruce de hilos corregimos llevando el eje polar hacia el este. El otro caso es al revés.

Para corregir altitud (estrella en el este): si la estrella deriva al sur se disminuye la altitud (el otro al revés)

La altitud también se puede corregir con una estrella en el oeste, en ese caso las correcciones son al revés.

Es común que uno se fastidie la primera, segunda, tercera vez que quiera aplicar esto y además es probable que no de pié con bola las primeras veces. Así a veces ocurre que algunos dicen que el método no sirve o que es mejor el buscador polar, cuando el buscador polar no es competencia para este método, alineando el telescopio por el método de la deriva pueden tener centrado un objeto toda la noche, solo quedando la deriva periódica del eje de AR. Para mi alinear por la deriva es un tiempo bien invertido a pesar que uno las primeras veces (más que nada) crea lo contrario. Hay que tener en cuenta que después de aplicarlo en reiteradas oportunidades uno aprende.

Saludos

Enlace al comentario
Compartir en otros sitios web

Gracias Fernando, muy buen aporte. Como decís, puede llegar a ser un poco dificil de entender al principio pero lo voy a ir probando de a poco.

Es verdad lo que comentás de la precisión del método, no hay con que darle.

Abrazo!

Enlace al comentario
Compartir en otros sitios web

Hola Pablo,

Se me ocurren algunos inconvenientes que lo harían poco viable.

El primero la dificultad de girar la cámara para alinear una línea del retículo con el movimiento de la estrella. Por más que el anillo T tuviera una contrarosca (en mi caso no la tiene), el peso de la cámara haría la tarea muy díficil.

Otra cuestión sería la de los aumentos. En foco primaria las reflex con Cmos grande dan una "magnificación" de unos 30 x con nuestros equipos. El proceso se haría poco preciso y eterno con tan pocos aumentos.

La puesta en estación lleva un tiempo considerable, habría que tener en cuenta el gasto de batería que generaría.

También habría que ver que tantas opciones de estrellas nos da el live view, desconozco ese tema.

Me parece poco práctico, sobre todo pudiendo hacer O.R.I a tan bajo costo.

Abrazo!

Enlace al comentario
Compartir en otros sitios web

Me pinchaste el globo con bastante contundencia, che.

Lo del giro de la cámara y los aumentos quizás se podría superar "enchufando" el anillo T en un adaptador que encastre en un barlow y luego en el portaocular, pero lo de la batería es una gran contra, evidentemente, porque encima el liveview consume "de lo lindo".

Así que... no hay caso, no zafo de construir el ocular reticulado, mecacho. :oops:

Enlace al comentario
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.


×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo