Jump to content

Artículo - Los Asteroides


admin

Publicaciones recomendadas

Historia, fisica y clasificacion de los asteroides. (Nivel: Intermedio)

 

 

1- Introducción históricaEl día primero de enero de 1801, el Astrónomo siciliano Giuseppe Piazzi, observando en Palermo un grupito de estrellas de la constelación de Toro, notó que una de las que había registrado en ese momento, al día siguiente había retrogradado 4 minutos de arco. Al principio supuso, al igual que W. Herschel en 1781 con Urano, que era un cometa.

 

 

Posteriormente, al analizar las distintas posición y calcular la órbita, tarea que fue realizada por un joven matemático desconocido todavía, llamado Gauss, con unas pocas posiciones, en un arco de 9 grados, y un periodo de 41 días, estaba claro que la orbita era casi circular, con una escasa inclinación, a una distancia de aproximadamente 2,77 UA. Esta órbita era mas parecida a la de un planeta que la de un cometa, y la colocaba entre las orbitas de Marte y Júpiter, en un lugar muy cercano a la predicción de la famosa Ley de Bode-Titius. Se lo denominó Ceres, en honor a la divinidad protectora de Sicilia.

Posteriormente, en 1802, Olbers descubrió el segundo asteroide, llamado Pallas. A partir de ese momento, comenzaron a descubrirse mas y mas, hasta que en la actualidad son varias decenas de miles. (hasta principios de 2004, 80 mil descubiertos, 11 mil con nombre).

Ahora la búsqueda en el hemisferio norte la realizan sistemas automáticos, como el Lincoln Near Earth Asteroid Research (LINEAR), el Near Earth Asteroid Tracking (NEAT), o el Lowell Observatory Near Earth Objetc Search (LONEOS), entre los más conocidos. Como no pueden patrullar hasta aquí, todavía esperanzas de descubrir algún cometa o asteroide desde nuestro hemisferio.

2 – Definición de Asteroide y OrígenesCuando se formó el Sistema Solar, quedaron dos zonas bien definidas; la central, que sería el futuro Sol, y un anillo girando a su alrededor, formado por rocas de variados tamaños, denominados planetesimales, que formarían a los planetas. El proceso de formación planetaria se produjo por acreción, esto es, choques 'gentiles' entre planetesimales, no lo suficientemente violentos para destruirlos, sino que por el contrario, se fundían en un astro mayor. Este proceso dio como resultado a los planetas. Los planetesimales que finalmente quedaron sin participar de este proceso, son los asteroides que ahora conocemos.

De todas maneras, no hay todavía no hay una definición exacta de los que es un asteroide, fundamentalmente porque se piensa que algunos satélites son asteroides capturados, como los pequeños satélites de Marte, y muchas de las lunas externas de Júpiter, Saturno, Urano y Neptuno. Adicionalmente, algunos cometas al morir (o sea, al dejar de tener material volátil que sea expulsado del núcleo) empiezan a comportarse como asteroide. Esto significa que lo que antes vimos como un cometa, ahora puede verse como asteroide, como es el caso de 1979VA, que tiene una orbita y posición coincidente con el cometa perdido Wilson-Harrington (1949 III).

 

Espacio Profundo
Fotografía de 1949 donde el cometa Wilson-Harrington mostraba cola.
Espacio Profundo
En el medio, con aspecto puntual, el ahora
asteroide 1979VA (4015 Wilson-Harrington).
Igualmente puede decirse que son 'rocas'
de unos miles kilómetros para abajo. Su
composición es o rocosa, metálica, una
mezcla de ambas en los pertenecientes al
Sistema Solar interno, y de hielo los externos,
mas parecidos a cometas que a asteroides.
Los mas grandes son esféricos, ya que su
gravedad es lo suficientemente grande como
para haber logrado reducir las
irregularidades. Los pequeños son totalmente
irregulares.

        

 

 

Existen mas de dos docenas de asteroides mas grandes de 200 km. Es probable que conozcamos el 99% de los de más de 100 km. Los de 10 a 100 km., nuestro conocimiento llega al 50%, pero conocemos pocos de los pequeños. Es probable que de menos de 1 km haya mas de 1 millón de ellos. Sumando a todos los que se encuentran dentro de la órbita de Neptuno, no llegan a superar la masa de nuestra Luna.

Existen pocos datos acerca de la densidad de los asteroides. Se puede conocer la misma cuando uno es desviado por un planeta, ya que eso permite por las leyes de Newton, medir su masa y finalmente, su densidad. Con estos métodos el error de la determinación es bastante grande, ya que el tamaño, y por lo tanto, el volumen del asteroide no es normalmente bien conocido. Las única medición directa, es por la desviación de las naves espaciales que llegaron hasta algunos asteroides, y que pudieron fotografiarlos. Sorprendentemente, con estos datos se llega a la conclusión que tienen una densidad apenas superior a la del agua, lo que significa que mas bien son acumulaciones de rocas, mas que objetos compactos. Si fueran compactos, su densidad debería ser muy superior.
Tienen enorme cantidad de cráteres, y su estructura parece apoyar mas la idea de que ha sido un planeta que no logró formarse, fundamentalmente debido a la influencia gravitacional de Júpiter. Aún así, veremos mas adelante que están divididos en familias, principalmente por sus orbitas, lo que en algunos casos significa un origen común de la familia.

 

Espacio Profundo
Modelo de Vesta en base a las fotografias del HST, donde puede
verse un enorme cráter oscuro.

Vesta ha sido recientemente estudiado por el Telescopio Espacial Hubble (HST). Es interesante debido a que parece ser un cuerpo con una estructura diferencial en capas, como los planetas terrestres. Esto implica que tuvo algún tipo calor interno de origen desconocido que fundió a Vesta (el calor natural producido por la desintegración de isótopos

 

no es suficiente), para lograr esa estructura interna. Esto se sabe porque en la imágenes del HST se ve un enorme cráter, que permite observar zonas expuestas del manto. Es posible que colisiones con otros cuerpos a baja velocidad hayan logrado este calor adicional.

Muchos asteroides se han encontrado como pertenecientes a un sistema doble, con un satélite orbitando, o a veces, en dos asteroides en contacto. Su gravedad es tan débil que pueden 'apoyarse' un sobre otro, y quedar visto a la distancia, como un solo asteroide muy elíptico.

En algunos aspectos, el conocimiento de estos astros recién está empezando, con las misiones espaciales, el HST y los telescopios con Opticas Adaptativas(*).

(*) Es un sistema que permite compensar los efectos distorsionantes de la atmósfera, logrando llegar a la resolución teórica del telescopio (6).

3 – Curvas de LuzLos asteroides, justamente por ser irregulares, a veces poseen una variación importante de su magnitud. Estas determinaciones permiten saber tanto la proporción de sus ejes mayor y menor, en primera aproximación como un elipsoide de revolución, su período de rotación, la dirección de su polo, etc.

La curva de luz es similar a la de una estrella variable, pero no es igual, ya que depende de objetos que no emiten luz, por lo que presentan sombras, y adicionalmente si el asteroide esta más cerca al Sol que la Tierra, presentará fases. Aparte, la curva va cambiando en distintos momentos, ya que depende de la configuración con presente con respecto a nosotros. Estos datos permiten calcular con relativa dificultad, la orientación de su polo, ya que cuando la variación de luz es mínima, normalmente el polo esta señalando al observador.

     

Espacio Profundo

Espacio ProfundoIzquierda: Explicación del motivo de la variación luminosa de los asteroides.Derecha: Curva real del asteroide 2001OE84.

 

 

 

 

 

 

 

 

 

 

 

 

 
Medición del tamañoLa enorme mayoría de los asteroides no tienen un 'disco' visible, como el caso de Vesta. Por su tamaño y distancia, normalmente no presentan una imagen mas que de una estrella. La determinación de su tamaño real es por medio del método fotométrico, que depende de su magnitud absoluta (M). La idea fundamental es que la M de un objeto, va a depender fundamentalmente de su tamaño, ya que al ser mas grande, mayor cantidad de luz va a reflejar. En realidad primero hay que determinar cual es su albedo (la cantidad de luz que refleja del Sol), ya que si el objeto refleja mucha luz, tendrá que tener un tamaño menor que si la superficie es oscura, a igual M. En los más lejanos, se utiliza un método térmico, que es dependiente de la radiación infrarroja que emite el asteroide. Suele tener gran error.Si puede determinarse su espectro, con otras consideraciones orbitales, es posible clasificar al asteroides, y según esa clasificación se puede saber cual es su albedo promedio. (ver clasificación taxonómica mas abajo).

Esta determinación suele tener un error importante, que puede llegar al 40%. La forma mas precisa para esta medición es por medio de la ocultación de estrellas por asteroides, ya que esto permite medirlos con un error pequeño.

En la ocultación por el asteroide Deira, el 9 de mayo de 2004, desde Santa Fe, en el Observatorio Géminis Austral, José Luis Sánchez, observó una desaparición de 8,2 segundos, y desde el Observatorio Cristo Rey, Gustavo Mazalan y Victor Buso, la midieron en 8,6 seg., cuando la predicción era de 7,1 segundos como máximo. La ocultación se predijo con el tamaño del asteroide por medios fotométricos, (unos 30 km – jamás fue medido de una forma directa), cuando por la medición realizada, mas bien parece que tuviera 40 o más km., o que sea muy elíptico.

4. Las ocultaciones
La ocultación de estrellas por asteroides es una de las maneras de obtener el tamaño y forma proyectada en el momento de la ocultación del asteroide, con una precisión muy alta. Con telescopios de pequeño tamaño es posible medir estos parámetros con un error mínimo.

 

Espacio ProfundoEspacio Profundo

Arriba: Ocultación por 216 Kleopatra. Observadores: a) Alex Amorín (Brasil)b) Eduardo Pulver- San Pedroc) OCR: Julio Nardon, Luis Mansilla y Victor Angel Buso Obs. Astr. del Colegio Cristo Rey de Rosariod) Juan Seguel – Chile - Este ultimo no registro tiempos, pero si vio la ocultación.

 

 En la ocultación observada por miembros de la LIADA de 216 Kleopatra, todos trabajaron con telescopios de 20 cm de diámetro. Por el control de tiempos, el asteroide fue medido con una precisión de 0,008'. Para llegar a esa resolución, se requeriría un telescopio de al menos 14 metros de diámetro!!!. Aproximadamente el error obtenido es de unos 7 kilómetros, duplicando la calidad de las anteriores determinaciones, logradas con la técnica de radar, con el radiotelescopio de 300 metros de diámetro de Arecibo.

5. ClasificaciónLos Asteroides están divididos en varios grupos. No todos los astrónomos coinciden en la clasificación. Normalmente tomamos la utilizada por la IAU. Entre ellos:Anillo Principal:Este grupo es el conocido desde el principio, y es el grupo de asteroides que están fundamentalmente entre Marte y Júpiter. Están divididos en familias, que normalmente reciben el nombre del primero que se descubrió de esa familia (ver mas abajo). También hay una distribución ordenada de los asteroides por efecto gravitacional de Júpiter. El planeta gigante permite o no determinadas orbitas en sus cercanías. Es por eso que en un análisis de la distribución de estos cuerpos, hay zonas faltantes, llamadas 'Lagunas de Kirkwood'. Sucede con los asteroides que tienen orbitas cuyo período es una fracción entera del de Júpiter, particularmente 1/3, 2/5 y 3/7. Los Near Earth Objects (NEOs)

Estos objetos están clasificados simplemente por que nosotros habitamos la Tierra, y nos interesan particularmente este tipo de asteroides, que pueden acercarse mucho a nuestro planeta (y eventualmente chocar con la Tierra), pero no tienen ninguna característica particular que permita clasificarlos físicamente. Eventualmente, si viviéramos en Marte, haríamos una subdivisión de NMO, o Near Mars Objects!!.Están subdivididos en grupos:a) Atenas: Tienen semiejes mayores de menos de 1,0 UAb) Apolos: Tienen perihelios menores de 1,0 UA.c) Amor: Distancia al Perihelio de menos de 1,3 UA.Los Troyanos

La mayoría están localizados cerca de Júpiter, en los denominados puntos de Lagrange. Estos lugares son de estabilidad gravitacional suficiente como para mantener orbitas por períodos largos. Los más importantes son los puntos L4 y L5, los que están a 60 grados por delante y por detrás del planeta, siguiendo su misma órbita.

En este momento se conocen unos 1200 Troyanos, la mayoría pertenecientes a Júpiter.

El primero fue descubierto por Max Wolf en 1906, en el punto L4, y se lo llamó 588 Aquiles. Existen también troyanos de otros planetas, como Venus, Marte (5261 Eureka) y casi todos los planetas grandes, por ej Neptuno tiene a 2001 QR322.

Aunque no son troyanos, nuestro planeta tiene asociados en orbitas inusuales a 3753 Cruithne, y a 2002AA29, que casi pueden considerarse lunas.

Centauros:Hay algunos objetos de este grupo en la parte externa del Sistema Solar. El más famoso es 2060 Chiron, que está en orbita entre Saturno y Urano. 5335 Damocles orbita desde cerca de Marte hasta mas allá de Urano. 5145 Pholus orbita desde Saturno hasta pasado Neptuno. Es seguro que debe haber muchos Centauros, pero no son fáciles de ver, y con seguridad tienen orbitas muy perturbadas, ya que cruzan a todos los planetas gigantes. Su composición química probablemente es mas parecida a la de cometas que asteroides, y de hecho 2060 Chiron hace unos años mostró emisión de material, por lo que está clasificado en este momento como cometa. TNOs (Trans Neptunian Objetcts) –Objetos mas allá de Neptuno.Un grupo final de objetos son los TNOs, objetos de hielo que se mueven principalmente más allá de la orbita de Neptuno, entre 30 y 50 UA (esta definición no es definitiva). Simulaciones por computadora sugieren que el jóven Júpiter, con su enorme gravedad, expulsó a estos objetos que no escaparon completamente. Las mismas simulaciones sugieren que podría haber objetos de la masa de Marte o inclusive, la Tierra aunque si existieran en nuestro Sistema Solar, ya deberían haber sido descubiertos.

Suelen ser grandes (aunque como recién se están descubriendo, es probable que haya muchos pequeños). Hasta ahora –2004- se conocen unos 800. Los mayores son mas grandes que 1 Ceres, aunque como están medidos térmicamente, por la cantidad de radiación IR, el error aun es grande. A pesar de ello, son objetos de 1500 km aproximadamente.

Entre ellos pueden destacarse Varuna de 1000 km, Ixion de 1000 km tambien, o 2002AW197, de 900 km. Uno de los últimos descubiertos es Sedna (1600 km), con una orbita muy estirada, que la recorre en 10.500 años, pero todavía está en discusión si Sedna es o no un TNOs, ya que está a más de 70 UA, fuera del area de clasificación. Dentro de esta definición, Plutón y su satelite, Caronte, serían los mayores TNOs conocidos.Hay otras subdivisiones, como los 'plutinos' o 'cubewanos', pero todavía no están aceptadas por todos.

A mayor distancia de las 50UA, están los objetos de la Nube de Oort interna (tambien conocidos como Scattered-Disk Objects (SDOs) 'Objetos de disco disperso', que todavía se mantienen orbitando cerca de la eclíptica. A Mucha mayor distancia, comienza a dominar la Nube de Oort tradicional, cuyos componentes ya no respetan las orbitas en el plano del Sistema Solar.

A estas distancias, nada está perfectamente definido. Seguramente con el tiempo se irán ajustando las definiciones de cada cuerpo.Clasificación Taxonómica

La clasificación Taxonómica depende del espectro. Obviamente el espectro fundamental es el del Sol, con el agregado o falta de las rayas espectrales solares, debida a la composición general del asteroide. Todos los asteroides están clasificados dentro de estos tipos.

A pesar de que la clasificación es muy extensa, la enorme mayoría de estos cuerpos caen dentro de tres categorías:

• Tipo C, incluye mas del 75% de los asteroides conocidos. Con albedo bajo (0,03); Composición: similar a los meteoritos tipo condritas carbonaceas.

• Tipo S, aproximadamente el 17%: relativamente brillantes (albedo: 0,10-0,22); Composición: metálicos (níquel-hierro, o mezclas con magnesio y silicatos)

• Tipo M, Casi todo el resto. Brillantes (albedo: 0,10-0,18); Composición: níquel-hierro puro.

Los demás de la clasificación son extremadamente raros.

A continuación se da la Clasificación Taxonómica de Tholen - 1987: (de datos aportados por el satélite IRAS). Albedo geométrico: cantidad de luz calculada reflejada (0,00=negro –ideal- 1,00=reflector perfecto) – Espectro: Clasificación espectral de la luz reflejada del Sol por el asteroide. (*) unidad nanómetro: la luz visible azul esta en 400nm. El rojo en 700 nm.
 

Espacio Profundo

 
Las familias

A pesar de que se sabe que la distribución general en el Sistema Solar es al azar, se ha determinado en 1918 (el japonés Hirayama) que si además del semieje mayor se tienen en cuenta la excentricidad y la inclinación, analizando la distribución de los asteroides en un espacio tridimensional, se encuentran zonas especialmente densas a las que denominó familias, sugiriendo que los miembros de una misma familia es probable que tengan un origen común. La idea fundamental es que si una familia comenzó como un solo objeto que colisionó y fracturó en varias partes, estas, por las influencias gravitacionales de los otros objetos del Sistema Solar, se irán separando, pero no cambiarían su excentricidad, ni su inclinación, ni su semieje mayor. Según últimas investigaciones con los datos del SDSS (1-4), los asteroides de cada familia son muy parecidos, y cada familia es bastante diferente, apoyando la idea de un objeto inicial fragmentado como origen de cada una.

 

 Espacio Profundo
Un Asteroide originario, se fractura en tres partes. Al pasar el tiempo, por la influencia gravitacional
de los otros astros, se van desplazando. Aparentemente, en el ultimo diagrama, son tres asteroides
que no tienen nada que ver, pero simplemente tienen casi la misma orbita rotada, y se los puede
descubrir porque conservan el mismo semieje mayor, la inclinación y la excentricidad.
Espacio Profundo
Distribución por familias en el Sistema Solar.Son 6612 asteroides del SDSS. Están distribuidos por colores.  En el eje horizontalesta el semieje mayor en UA, en el vertical la inclinación. Se pueden ver perfectamente definidas las distintas familias. Las líneas verticales negras sin asteroides son las Lagunas de Kirkwood. (la de 2,5 UA corresponde a la resonancia 1/3). (1-4).

 

 

 
 
7- Método para la denominación de los asteroides
Ni bien se descubre un nuevo asteroide, recibe un número preliminar de clasificación, otorgado por el Centro de Planetas Menores (Minor Planet Center o MPC) compuesto por una clave que consta de un número, (el año), y de dos letras: la primera indica la quincena en que se descubrió y la segunda reflejando la secuencia de descubrimiento dentro de la quincena. De este modo, 1989 AC, (4179 Toutatis) fue descubierto en la primera quincena de enero (A) de 1989, y que fue el tercero © descubierto en ese período.
 
Una vez que la órbita se ha establecido con la suficiente precisión como para poder predecir sus futura trayectoria, se les asigna un número (no necesariamente el del orden en que fue descubierto) y, más tarde, un nombre permanente elegido por el descubridor y aprobado por un comité -la división III- de la Unión Astronómica Internacional (International Astronomical Union o IAU).
 
Al principio, todos los nombres con los que se bautizaba a los asteroides eran de personajes femeninos de la mitología griega y romana pero pronto se terminaron. Por ese motivo se decidió continuar con denominaciones menos rígidas, que ahora incluyen ciudades, actores, inventores, cantantes, etc. (2745 San Martín – 2738 Viracocha – 293 Brasilia – 7850 Buenos Aires - 4147 Lennon, etc).
 
Referencias:
1) COLOR CONFIRMATION OF ASTEROID FAMILIESZeljko Ivezic, Robert H. Lupton, Mario Juric, Serge Tabachnik, Tom Quinn, James E. Gunn, Gillian R. Knapp, Constance M. Rockosi, and Jonathan Brinkmann The Astronomical Journal, 124:2943…2948, 2002 November2) IOTA – Ocultaciones de estrellas por asteroides. Datos, predicciones, etc. http://www.asteroid-occultation.com/iota/ 3) Sección Asteroides – Liada – http://www.kappacrucis.com.uy/observatorio/asteroides.htm4) SDSS – enorme catalogo de objetos - http://www.sdss.org/5) MPC – Minor planet Center - http://cfa-www.harvard.edu/cfa/ps/mpc.html6) Opticas Adaptativas - http://www.xtec.es/recursos/astronom/oa/indexs.htm#oa7) Base de Datos muy interesante, con asteroides de todas las clases.http://cfa-www.harvard.edu/iau/lists/Unusual.html *Claudio Martínez es Coordinador de la Sección Ocultaciones Liga Iberoamericana de Astronomía. Es Director del Instituto Superior de Ciencias Astronomicas (ISCA). Da cursos de Astronomia General y Avanzada desde hace 23 años. Fue Director del Observatorio de la Asociacion Argentina Amigos de la Astronomia. Su especialidad es el área observacional.

Ver artículo

Enlace al comentario
Compartir en otros sitios web

Invitado
Este tema está cerrado a nuevas respuestas.
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.

×
×
  • Crear nuevo...