Jump to content

Resolución y Magnificación


Alvarez

Publicaciones recomendadas

Si bien esto ya lo había comentado en algunas otras partes, como siempre quedo metido en medio de alguna otra cosa, trate de juntar todo en un solo post.

¿Qué es la Resolución?

En general cuando se habla de resolución y en particular del Límite de Rayleigh, se lo asocia con la capacidad de separar estrellas dobles o resolver algún cúmulo cerrado. Si bien lo anterior es correcto, estas consideraciones van un poco más allá. Imaginemos que observamos por un telescopio a una cebra, si la posibilidad de separar las rayas de la cebra está más allá de la capacidad de resolución del telescopio a lo sumo veríamos un caballo medio gris o tirando a overo. En otras palabras, resolver un objeto es poder separar la interfase entre dos detalles significativos.

¿Por qué en segundos de arco?

Quedamos entonces que el Límite de Rayleigh nos da una medida en segundos de arco de la posibilidad de separar dos cosas (estrellas dobles o las rayas de una cebra galáctica). Pero ¿por que en segundos de arco?

Supongamos el caso de un telescopio de 200mm, se puede deducir en base a fórmulas que la resolución de un objeto en la Luna es de aproximadamente dos kilómetros y medio, esto significa que a los efectos prácticos cualquier cosa que se encuentre en un círculo de 2.5km de diámetro para nosotros estaría fundido en un punto (algo así como un pixel en el sensor que tenemos en el cerebro). Pero con el mismo telescopio resulta que si observamos el Sol (con algún filtro adecuado especialmente diseñado para ello, nada improvisado), como está aproximadamente 400 veces más lejos que la Luna, no podremos separar nada de poco menos de mil kilómetros. Resulta obvio que este método resulta absolutamente incómodo ya que es necesario saber la distancia del objeto a observar para poder ponderar que podemos separar y que no. Pero ¿qué tiene en común la posibilidad de separar algo en la Luna y el Sol? El ángulo (que es tan chico que la tangente y el seno son casi lo mismo), por eso se especifica en segundos de arco.

¿Entonces el límite es la apertura?

Siguiendo con la Luna, sería lógico pensar que si tenemos un telescopio con la suficiente apertura (kilómetros) podríamos ver las pisadas de Neil Armstrong. Lamentablemente ni disfrazados de Papión Sagrado de la India podríamos ver algo así desde la Tierra a no ser que sea en una documental por TV. Esto no quiere decir que Rayleigh este mal, esto se debe a que la atmósfera distorsiona lo que vemos, por lo que existe (y valga la redundancia) un límite para el Límite de Rayleigh. Esto está dado por el nivel de seeing (para mas datos sobre este tema pueden consultar: ¿Buen seeing y buena transparencia? ¿Dónde?)

Como bien se explica en esa nota el nivel de seeing depende de varios factores, en resumen y a efectos de acotar la capacidad de resolución en función del cielo veamos algunas cotas que son meramente empíricas y no constituyen una regla escrita en piedra:

  • 0.1 - 0.5 Realmente son pocos los lugares donde se alcanzan estos valores y por lo general son inaccesibles para el común de las personas.
    0.5 - 0.8 Si bien son valores alcanzables corresponden a lugares con cielos privilegiados, en general son el sitio de emplazamiento de varios observatorios.
    0.8 - 1.0 Zonas desérticas o mesetas lo suficientemente distantes a cadenas montañosas y el mar (o grandes espejos de agua).
    1.0 - 1.5 Campo abierto, lo suficientemente distante a centros poblados.
    1.5 - 2.0 Zonas suburbanas
    2.0 - 3.0 Zonas urbanas con bajas densidades de población.
    3.0 - 4.0 Zonas urbanas con altas densidades de población o sitios cercanos a zonas industriales.

El problema de esto es que el mismo cielo que un día nos da 1.5 segundos de arco de resolución el día siguiente puede estar en 2.0 o 3.0.

¿Qué tiene que ver todo esto con la capacidad de magnificación?

Abusando un poco del sentido común se podría utilizar el Límite de Rayleigh para ponderar las cotas de magnificación dependiendo de la calidad del cielo. Es decir, si la capacidad de resolución del cielo anda cerca de 1 segundo de arco eso equivale más o menos a un telescopio de 140mm de apertura.

Límite de Rayleigh = (1.22 x λ x 0.2063) / A ~ 138.4 / A [segundos de arco]

λ : Longitud de onda en nm, generalmente se utiliza 550nm correspondiente a la luz verde.

A : Apertura (diámetro) del telescopio [mm]

0.2063 : Conversión de radianes a segundos de arco multiplicado por 1mm/1nm, es decir:(180x60x60)/(Πx10^6)

Redondeando un poco resultaría: Resolución = 140 / A [segundos de arco]

En efecto, tenemos que con una resolución de 1 segundo de arco resulta evidente que con una apertura de 140mm nos alcanza para lograr esa resolución. Ahora bien, con un telescopio de 140mm de diámetro, sabemos que la máxima magnificación (Mmax) que podemos lograr es 280x, dos veces la apertura (siendo muy conservadores), es decir:

Resolución = 140 / (Mmax / 2) = 280 / Mmax [segundos de arco]

En otras palabras, por más que tengamos un 300mm más de 280x resulta inútil a la hora de separar detalles en visual. Esto no quiere decir que un 300mm sea inútil, es obvio que captura mas luz y por ende se verán cosas que no se verían en un 140mm, lo que se trata de decir es que al 300mm más de 288x no se le puede sacar, más de eso nos da una imagen donde la cebra se confunde con un caballo gris, el tema es que el con el 300mm nos damos cuenta que es algo parecido a un caballo, con el 140mm en una de esas no podríamos distinguir entre un caballo y una licuadora (dependiendo del objeto).

Pero si uno lo piensa, 1 segundo de arco es poco, ¡¡¡ qué cielo de porquería !!! No tan poco, eso equivaldría a poder ver si lo que viene de frente es un auto o una moto a unos 150 km de distancia. Tomando en cuenta lo anterior lo que nos aportaría más apertura es poder determinar si se trata de un auto o de un camión, pero el logo de la marca ni por casualidad (al menos no a 150 km).

En lo personal en lugar de 2 utilizo el “Factor de Magnificación” (FM) el que depende del diseño óptico. Luego de algunas pruebas con diferentes telescopios y oculares los valores a los que llegue son los siguientes:

FM = 2.50 Refractor Apocromático

FM = 2.40 Maksutov-Cassegrain

FM = 2.25 Ritchey-Chrétien

FM = 2.25 Schmidt-Cassegrain

FM = 2.20 Refractor Acromático

FM = 2.00 Refractor Común

FM = 2.00 Reflector Newtoniano

Como jamás utilicé un Maksutov-Newton o un Schmidt-Newton no me jugaría a tirar un valor, pero supongo que deberían estar entre los Cassegrain y los Newton, posiblemente más cerca de los primeros.

Sería entonces: Resolución = 140 x FM / Mmax [segundos de arco]

¿Podemos utilizar esto para medir de forma aproximada la resolución del cielo?

Si, es bastante simple, como sabemos que la magnificación es el cociente entre la focal del telescopio y la focal del ocular, conocidos FM y las focales sólo basta ir probando oculares (o mediante un buen zoom) hasta lograr una imagen nítida (Mmax). Así pues, para un Reflector Newtoniano 200/1000 sería:

Resolución = 140 x FM / Mmax [segundos de arco]

Resolución = 140 x FM / (Focal_Telescopio/Focal_Ocular) Con imagen nítida [segundos de arco]

Reemplazando los valores conocidos FM=2 y Focal_Telescopio=1000, resulta:

Resolución = 0.28 x Focal_Ocular Con imagen nítida [segundos de arco]

Cuando encontramos el ocular que nos da una imagen nítida (que no parece estar fuera de foco), reemplazamos ese valor y tenemos la Resolución en segundos de arco, si por ejemplo el ocular que nos brinda esa imagen es cualquiera por encima de 7mm, resultará que la resolución está en aproximadamente 2 segundos de arco (cosa bastante normal aún en el campo).

Si usan la Calculadora de Oculares, tanto en la opción Web (http://www.simandoc.com.ar/ep/) como en su versión Excel (about18048.html), hay un par de campos para determinar la Máxima Magnificación en función de la Resolución (Límite de Rayleigh) y viceversa.

Edición: Agregue algo aclaratorio más adelante, ver: about19684-10.html#p175944 (espero que aclare algo)

Editado por Guest
  • Like 4
Enlace al comentario
Compartir en otros sitios web

Gracias por los comentarios, me alegro que les haya gustado.

Para la próxima os contaré como calcular la relación señal a ruido de un radiotelescopio casero, hecho con una alpargata de yute usada (negra o banca, yo he escogido negra porque me place), una pata de pollo parrillero y dos papas de Balcarce brotadas.

Enlace al comentario
Compartir en otros sitios web

excelente articulo ale!

como nos tenes acostumbrados, todo un lujo y clarisimo!.....

saludos

Enlace al comentario
Compartir en otros sitios web

Buenisimo Alvarez, gracias por compartirlo y desasnarme un poco con el articulo, ya estoy esperando el del rediotelecopio casero :lol::lol::lol: , al que lo requiera, le puedo facilitar la pata de pollo o permuto por la papa jaja

Enlace al comentario
Compartir en otros sitios web

Excelente aporte Alvarez!!..

Ud siempre echando una pizca de ciencia a nuestro empirismo cotidiano! :D

Ahora entiendo porque son contadas las veces que puedo usar mi ocular de 6mm en el 200. :roll:

Muchas gracias!

Enlace al comentario
Compartir en otros sitios web

Como ya me preguntaron algunas veces lo mismo lo aclaro acá, el famoso dos veces el diámetro de los reflectores newtonianos es correcto, en algunos otros diseños el fabricante especifica entre 2.0 y 2.5 veces la apertura e incluso he llegado a ver hasta tres veces, ya más de tres veces el fabricante exagera o lo que es exagerado es el precio.

Ahora bien, lo anterior hace al diseño del telescopio y no a las posibilidades reales de magnificar algo y verlo claramente. En un cielo ideal, difícil de conseguir para un aficionado, la máxima magnificación está entre 550x y 700x dependiendo del diseño óptico y la calidad del telescopio y los oculares. En un cielo estupendo, algún desierto por ejemplo con un seeing muy bueno, digamos que la cosa está entre 280x y 350x, dependiendo de lo mismo que antes. En el campo, con algo de seeing y humedad en el aire sería entre 150x y 180x. Por último, en zonas urbanas con un cielo como normalmente se tiene la cosa estaría en unos 100x. Notar que nunca he hecho mención la apertura del telescopio.

Lo anterior no quita que se puedan usar 300x en pleno centro de Buenos Aires o cualquier ciudad densamente poblada, a veces las condiciones del cielo hasta lo permiten, el tema es que si el cielo no es muy bueno los detalles se van a ver borrosos. Generalmente se piensa que es un problema de foco, cuando en realidad es pedirle peras al olmo.

En resumen, por más que usemos un 500mm si queremos ver detalles el que manda es el cielo, no la formula "2 x Apertura". Lo que si es cierto que a mayor apertura se verán cosas que no se verían con equipos más chicos, pero es más información con el mismo nivel de detalle. Claro está que esto es válido siempre y cuando la magnificación que se puede conseguir esté a la altura de la capacidad del telescopio, si el cielo entrega 200x y se tiene un 60mm comunardo, allí el límite sería a lo sumo 120x o con buenos accesorios en una de esas 150x, pero 200x casi seguro que no logramos.

Una recomendación (que además es compartida por varios acá) es que no busquen accesorios para maximizar la capacidad de magnificación del telescopio, van a terminar gastando dinero en algo que con suerte podrán utilizar una o dos veces al año, sean conservadores y ponganse en la condición habitual de su sitio de observación al determinar los máximos. A lo sumo, si quieren, compren un muy buen barlow apocromático para usar con los oculares de mayor focal cuando los dioses del cielo se dignan a entregar muy buenas condiciones de observación.

  • Like 1
Enlace al comentario
Compartir en otros sitios web

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
  • ¿Cómo elegir un telescopio?

     

    Los telescopios vienen en muchas formas y tamaños, y cada tipo tiene sus propias fortalezas y debilidades. El primer paso para decidir qué telescopio comprar es saber para qué lo desea utilizar. Estas son las formas de usar un telescopio:

     

    Astronomía visual: el proceso de mirar a través de un ocular conectado a un telescopio para ver objetos distantes.
    Astrofotografía: la práctica de usar una cámara conectada a un telescopio o lente para fotografiar objetos en el espacio exterior.
    Ambos: si desea utilizar un telescopio tanto para imágenes como para imágenes, ¡también está bien!

     

    Solo sepa que los telescopios que pueden hacer ambas cosas bien generalmente cuestan más.
    Para la astronomía visual, especialmente los telescopios para principiantes, la mayoría de los telescopios ya vienen como un paquete completo. Eso significa que el telescopio estará listo para usar e incluye el telescopio, la montura y cualquier otra cosa que necesite para comenzar, como oculares y otros accesorios. Para hacer astrofotografía que no sea con un teléfono inteligente, los componentes generalmente se venden por separado para permitir un enfoque más personalizado. Esto significa que si está interesado en obtener imágenes más allá de solo con un teléfono inteligente, generalmente deberá comprar el telescopio, la montura y la cámara por separado.

     

    El segundo paso para decidir qué telescopio comprar es tener una idea de lo que principalmente desea observar o fotografiar. Si puede reducirlo entre uno u otro, hará que su decisión sea mucho más fácil. Por supuesto, un telescopio se puede usar para otros fines, como la visualización terrestre (durante el día), pero es importante decidir primero cómo lo usará por la noche:

     

    Objetos planetarios / del sistema solar: esto incluye los planetas, la Luna y el Sol.
    Objetos del cielo profundo: esto incluye galaxias, nebulosas, cúmulos de estrellas y cualquier otra cosa más allá de nuestro sistema solar.0

     

    Tanto espacio profundo como Planetaria: hay un grupo selecto de telescopios que son excelentes tanto para cielo profundo como planetario, especialmente para astrofotografía, pero generalmente cuestan más.
    El tercer y último paso para decidir qué telescopio comprar es incorporar su presupuesto, qué tan portátil es la configuración que desea y su nivel de habilidad en su decisión. 

     

    Recomendamos leer ¿Cómo elegir un telescopio?

     

    Introducción a las monturas de telescopios

    Aunque la mayoría de los telescopios para principiantes ya vienen con algún tipo de montura incluida, comprar una montura por separado puede abrir muchas puertas para más posibilidades de observación o imágenes. Para los observadores visuales, un montaje de altitud-azimut es el camino a seguir. Para los astrofotógrafos que realizan imágenes de cielo profundo, una montura ecuatorial producirá los mejores resultados. Las monturas híbridas combinan lo mejor de ambos mundos a un precio más alto, y los rastreadores de estrellas son como mini monturas ecuatoriales para el creador de imágenes que viaja o para el principiante.

     

    Para astrofotografía, especialmente para imágenes de cielo profundo, la montura es posiblemente el componente más importante de cualquier configuración. Sí, lo has leído bien, ¡incluso más importante que el telescopio o la cámara! La razón de esto es que es solo la montura la que determina la precisión con la que su cámara y telescopio pueden rastrear el cielo y, por lo tanto, cuánto tiempo puede exponer sin experimentar rastros de estrellas. Recoger la mayor cantidad de luz posible es fundamental en la astrofotografía de cielo profundo, y sin una montura ecuatorial de calidad, estará limitado en la cantidad de luz que puede recolectar en cada exposición. Por esta razón, además de la cámara y el telescopio, recomendamos gastar alrededor de la mitad de su presupuesto total en la montura para obtener imágenes de cielo profundo.

     

    Otra consideración importante para la obtención de imágenes de cielo profundo con una montura ecuatorial es la capacidad de carga útil. La capacidad de carga útil, que es la cantidad de peso que puede soportar la montura (excluidos los contrapesos), es la especificación más importante para cualquier montura ecuatorial. 

     

    Para los observadores visuales que tienen un telescopio pero no una montura, las monturas independientes de altitud-azimut son una excelente opción. Muchos de estos vienen con la misma capacidad computarizada que tienen la mayoría de las monturas ecuatoriales. Después de un proceso de alineación simple, esta capacidad de acceso computarizado permite que la montura no solo encuentre y apunte a los objetos automáticamente, sino que los rastree y los mantenga centrados a través del ocular. Para los observadores binoculares, un trípode con un cabezal de altitud-azimut hace que la experiencia sea simple y agradable, y los montajes estilo paralelogramo mejoran esto al permitir ángulos de visión aún más cómodos.

    Ya sea que solo esté esperando agregar la capacidad de seguimiento y acceso a su telescopio visual existente o si tiene la mira puesta en fotografiar galaxias y nebulosas débiles, ofrecemos una amplia variedad de soportes para cualquier necesidad. 

     

    Ver todas las monturas

     

    Introducción a las cámaras para astronomía

    Como ocurre con la mayoría de los equipos de astronomía, no existe una cámara de "talla única" que sea la mejor en todo. Si espera obtener imágenes de objetos del espacio profundo, una cámara de astronomía refrigerada es el camino a seguir. Si espera obtener imágenes de los planetas, la luna, el sol u otros objetos del sistema solar, una cámara de alta velocidad de fotogramas hará maravillas por usted. Comprender la diferencia entre estos diferentes tipos de cámaras y sus especificaciones lo ayudará a decidir cuál es su próxima cámara para astronomía.

     

    Para obtener imágenes de cielo profundo, se trata de maximizar la cantidad de luz que puede recolectar y lo limpia que es la imagen. Cuando se toman imágenes de objetos del cielo profundo, es mejor utilizar una cámara refrigerada, que puede evitar el ruido durante exposiciones prolongadas. Las cámaras con mayor eficiencia cuántica, tamaños de píxeles más grandes, mayor capacidad de pozo completo (full well) y menor ruido de lectura, entre otras especificaciones, producirán imágenes más limpias. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras de imágenes de cielo profundo para principiantes.

     

    Para las imágenes planetarias, se trata de maximizar la cantidad de detalles en los planetas y otros objetos del sistema solar, que generalmente son increíblemente pequeños. Los planetas son tan pequeños que no solo requieren un telescopio de larga distancia focal, sino que las turbulencias en la atmósfera pueden tener un gran efecto en el nivel de detalle de la imagen. Para imágenes planetarias, un sensor pequeño y una cámara de alta velocidad de fotogramas es su mejor amigo. Haga clic aquí para ver nuestras recomendaciones sobre las mejores cámaras planetarias, lunares y solares.

     

     

  • Astronomia Definición

    La astronomía es la ciencia que estudia los cuerpos celestes del universo, incluidos las estrellas, los planetas, sus satélites naturales, los asteroides, cometas y meteoroides, la materia interestelar, las nebulosas, la materia oscura, las galaxias y demás; por lo que también estudia los fenómenos astronómicos ligados a ellos, como las supernovas, los cuásares, los púlsares, la radiación cósmica de fondo, los agujeros negros, entre otros, así como las leyes naturales que las rigen. La astronomía, asimismo, abarca el estudio del origen, desarrollo y destino final del Universo en su conjunto mediante la cosmología, y se relaciona con la física a través de la astrofísica, la química con la astroquímica y la biología con la astrobiología.

     

    Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La mayoría de la información usada por los astrónomos es recogida por la observación remota, aunque se ha conseguido reproducir, en algunos casos, en laboratorio, la ejecución de fenómenos celestes, como, por ejemplo, la química molecular del medio interestelar. Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente sobre el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

    La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Tycho Brahe, Johannes Kepler, Galileo Galilei, Christiaan Huygens o Edmund Halley han sido algunos de sus cultivadores. La metodología científica de este campo empezó a desarrollarse a mediados del siglo XVII. Un factor clave fue la introducción del telescopio por Galileo Galilei, que permitió examinar el cielo de la noche más detalladamente. El tratamiento matemático de la Astronomía comenzó con el desarrollo de la mecánica celeste y con las leyes de gravitación por Isaac Newton, aunque ya había sido puesto en marcha por el trabajo anterior de astrónomos como Johannes Kepler. Hacia el siglo XIX, la Astronomía se había desarrollado como una ciencia formal, con la introducción de instrumentos tales como el espectroscopio y la fotografía, que permitieron la continua mejora de telescopios y la creación de observatorios profesionales.

     

    La palabra astronomía proviene del latín astrŏnŏmĭa /astronomía/ y esta del griego ἀστρονομία /astronomía/. Está compuesta por las palabras άστρον /ástron/ 'estrellas', que a su vez viene de ἀστῆρ /astḗr/ 'estrella', 'constelación', y νόμος /nómos/ 'regla', 'norma', 'orden'.

    El lexema ἀστῆρ /astḗr/ está vinculado con las raíces protoindoeuropeas *ster~/*~stel (sust.) 'estrella' presente en la palabra castiza «estrella» que llega desde la latina «stella». También puede vérsele en: astrología, asteroide, asterisco, desastre, desastroso y muchas otras.

    El lexema ~νομία /nomíā/ 'regulación', 'legislación'; viene de νέμω /némoo/ 'contar', 'asignar', 'tomar', 'distribuir', 'repartir según las normas' y está vinculado a la raíz indoeuropea *nem~ 'contar', 'asignar', 'tomar', distribuir'; más el lexema ~ία /~íā/ 'acción', 'cualidad'. Puede vérsela en: dasonomía, macrotaxonomía, tafonomía y taxonomía.

    Etimológicamente hablando la astronomía es la ciencia que trata de la magnitud, medida y movimiento de los cuerpos celestes.


×
×
  • Crear nuevo...

Información importante

Términos y condiciones de uso de Espacio Profundo