ASTROFÍSICA RELATIVISTA

SERGIO MENDOZA <sergio@astroscu.unam.mx>

http://www.astroscu.unam.mx/~sergio
Instituto de Astronomía
Universidad Nacional Autónoma
de México

Índice general

Índice general			3	
Ín	dice	de figuras	7	
Pı	efaci	o	9	
Co	opyri	${f ght}$	11	
A	grade	cimientos	13	
I.	Intr	oducción a la astrofísica	17	
	§1.	Historia	17	
	§2.	Astronomía en Mesoamérica	21	
	§3.	Astrofísica relativista	24	
	§4.	Constituyentes básicos del universo	26	
	§5.	Radiación de fondo	30	
	§6.	Mediciones en astrofísica	37	
II.	Rela	atividad Especial	49	
	§7.	Introducción	49	
	§8.	Vectores y tensores en el espacio euclidiano de 3D	49	
	§9.	Principio de relatividad	53	
	§10.	Relatividad del tiempo	55	
	§11.	Intervalos	59	
	§12.	Tiempo propio	64	

	§13.	Transformación de Lorentz	67
	§14.	Cuatro-vectores	72
	§15.	Mecánica relativista	81
TTI	Floo	etromagnetismo.	85
111			
		Introducción	
		Ecuación de movimiento en un campo electromagnético	
	§18.	Tensor electromagnético	89
	§19.	Ecuaciones del campo electromagnético	91
IV	Hid	rodinámica Relativista	97
	§20.	Tensor de energía-momento	97
	§21.	Cuerpo macroscópico	101
	§22.	Ecuaciones de la hidrodinámica	102
	§23.	Hidrodinámica no-relativista	106
	§24.	Cosmología Newtoniana	107
T 7	T7 - 4		111
٧.			111
		Criterio de Jeans	
	§26.	Energía de amarre gravitacional	114
	§27.	Ecuaciones de estructura estelar	116
	§28.	Generación de reacciones nucleares	125
	§29.	Modelos estelares	130
	§30.	Presión degenerativa	132
	§31.	Enanas blancas	134
	§32.	Estrellas de neutrones	136
	§33.	Supernovas	138
		Pulsares	146
		Límite de Eddington	150
		Transferencia de masa	151
		Acreción	156

${f VIRelation Relation}$	atividad General	171
§38.	Experimentos de Eötvos, Dicke y Braginsky	172
§39.	Principio de equivalencia	174
§40.	Gravitación y espacios curvos	176
§41.	Corrimiento al rojo gravitacional	178
§42.	Deflexión de rayos de luz	180
§ 4 3.	Vectores y tensores en espacios curvos	181
§44.	Intervalos de espacio y tiempo	188
§45.	Diferenciación	191
§46.	Movimiento de una partícula	200
§47.	Ecuaciones del campo gravitacional	203
§48.	Espacios isotrópicos curvos	210
VIAgu	ijeros negros	217
§49.	Métrica de Schwarzschild	217
§50.	Órbitas alrededor de objetos compactos	219
§51.	Perihelio de órbitas planetarias	223
§52.	Partículas y rayos de luz cerca de agujeros negros	226
§53.	Energía de amarre en órbitas circulares	228
§54.	Deflexión de la luz por objetos gravitacionales	230
§55.	Experimentos en gravitación relativista	232
§56.	Agujeros negros en general	235
§57.	Leyes de la termodinámica para agujeros negros	239
§58.	Núcleos activos de galaxias	241
§59.	Discos de acreción alrededor de agujeros negros	246
§60.	Leyes de escala en agujeros negros	247
§61.	Jets extragalácticos	248
VIIIos	mología	253
§62.	Observaciones cosmológicas	253
	Ley de Hubble	
	Métrica de Robertson-Walker	

§65.	Cosmología observacional	30
§66.	Ecuaciones de Friedmann	33
§67.	Modelo estándard de Friedmann	34
§68.	Modelos de polvo con $\Lambda \neq 0$	39
§69.	Historia térmica del universo	73
§70.	Origen de la estructura a larga escala	77
§71.	Materia oscura	35
§72.	Inflación	36
§73.	Energía oscura) 1
§74.	El destino del universo) 2
Apéndi	ice: GNU Free Documentation License 29)5
-	ice: GNU Free Documentation License Applicability and Definitions	•
§75.		96
§75. §76.	Applicability and Definitions	96 97
\$75. \$76. \$77.	Applicability and Definitions	96 97 97
\$75. \$76. \$77. \$78.	Applicability and Definitions	96 97 97 98
\$75. \$76. \$77. \$78. \$79.	Applicability and Definitions	96 97 97 98
\$75. \$76. \$77. \$78. \$79.	Applicability and Definitions29Verbatim Copying29Copying in Quantity29Modifications29Combining Documents30	96 97 98 91
\$75. \$76. \$77. \$78. \$79. \$80. \$81.	Applicability and Definitions29Verbatim Copying29Copying in Quantity29Modifications29Combining Documents30Collections of Documents30	96 97 97 98 91
\$75. \$76. \$77. \$78. \$79. \$80. \$81. \$82.	Applicability and Definitions29Verbatim Copying29Copying in Quantity29Modifications29Combining Documents30Collections of Documents30Aggregation With Independent Works30	96 97 97 98 91 91

Índice de figuras

I.1.	Radiación electromagnética recibida en la superficie de la tierra	18
I.2.	Hierofanía en la pirámide de Kukulkan	23
I.3.	Galaxia Andrómeda	28
I.4.	Galaxia elíptica M87	29
I.5.	Mapeo de galaxias del CfA	31
I.6.	Proyección de Hammer-Aitoff de la tierra	32
I.7.	Mapa del cielo en radiación óptica	33
I.8.	Mapa del cielo en rayos- X	34
I.9.	Mapa del cielo en rayos— γ	35
I.10.	Mapa del cielo en infrarrojo	36
I.11.	Mapa del cielo en milimétrico	44
I.12.	Fluctuaciones de la radiación milimétrica	45
I.13.	Mapa del cielo a 408 MHz	46
I.14.	Paralaje astronómico	47
II.1.	Movimientos superlumínicos en astrofísica	57
II.2.	Diagrama espacio-tiempo de movimiento superlumínico de dos fuentes en	
	astrofísica	58
II.3.	Cono de luz en el espacio-tiempo.	64
IV.1.	Integral del tensor energía-momento en un volumen del espacio-tiempo	100
IV.2.	Flujo a través de una superficie infinitesimal	103
V.1.	Supernova 1054 observada por Teotihuacanos	140

V.2. La nebulosa del cangrejo	11
V.3. Modelo de un pulsar	19
V.4. Superficies equipotenciales de un sistema binario	54
V.5. Acreción de un gas en rotación hacia un objeto condensado 16	31
VI.1. Elevador de Einstein y corrimiento al rojo gravitacional	79
VI.2. Elevador de Einstein y espacio curvo	32
VI.3. Transporte paralelo sobre geodésicas)4
VI.4. Métrica sobre la 2-esfera	12
VII.1. Variación del potencial gravitacional y centrifugo en un campo gravitacional Newtoniano	22
relativista	24
VII.3Ejemplos de lentes gravitacionales	32
VII.4Ergoesfera de un agujero negro en rotación	38
VII.5Radio galaxia Cygnus A (3C 405)	12
VII.6Líneas espectrales de un disco de acreción	15
VIII. Cono de luz para el universo	58

Prefacio

Este documento fue escrito por Sergio Mendoza <sergio@astroscu.unam.mx> (http://www.astroscu.unam.mx/~sergio).

Estas notas de curso que yo escribí primeramente para el curso de "Gravitación Astrofísica" han sido modificadas y aumentadas para tener su forma actual basadas en el curso de "Astrofísica Relativista" que impartí en el 2003 en la Facultad de Ciencias de la UNAM. Este escrito fue hecho utilizando LaTeX-2e. Todo el software utilizado fue software libre (http://www.gnu.org) y Debian (http://www.debian.org), el sistema operativo de la Fundación de Software Libre GNU (http://www.gnu.org).

Diversas versiones de este documento (incluyendo las gráficas en colores y demás -si es que estás viendo este documento en blanco y negro) pueden encontrarse en http://www.astroscu.unam.mx/~sergio/gravitacion. Todo este documento es copyright ©Sergio Mendoza y está basado en las ideas de libertad de enseñanza y educación (ver la sección copyright).

Cualquier sugerencia y correcciones sobre las notas será bienvenida para su inclusión.

Finalmente quiero mencionar que cada vez que observo estas notas pienzo que debe haber mas material por agregarseles. Supongo que esto es el sentimiento de la investigación misma: ¡nunca termina! Sin embargo, estas notas tienen que tener un final. Pronto comenzaré a escribir la continuación del curso de Astrofísica Relativista. Este curso será un curso de geometría diferencial y formas diferenciales aplicadas a diversas ramas de la física, sobre todo a la gravitación y a la astrofísica.

Sergio Mendoza <sergio@astroscu.unam.mx>
http://www.astroscu.unam.mx/~sergio
Instituto de Astronomía
Universidad Nacional Autónoma de México
Ciudad Universitaria
Distrito Federal
México

Última Modificación: Vie Oct 17 17:00:40 UTC 2003

Capítulo I

Introducción a la astrofísica

La astronomía es una de las ramas de la ciencia mas antiguas que existen. Nuestros detectores naturales (ojos) nos permiten captar solo una parte importante del espectro electromagnético: la radiación óptica. La atmósfera terrestre es tal que filtra casi toda la radiación electromagnética proveniente del cosmos. Solamente existen dos ventanas en el espectro electromagnético a través de las cuales la radiación se transmite: las frecuencias de radio y óptico. Es maravilloso que nuestros ojos puedan detectar una de las radiaciones provenientes del universo a través de la ventana del óptico. La fig.I.1 muestra la radiación que es posible observar desde la superficie terrestre. Diversas civilizaciones en el pasado desarrollaron una inmensidad de observaciones y así pudieron hacerse preguntas tales como: ¿Qué son esos puntos blancos (estrellas) que se mueven de este a oeste en el cielo? ¿Cual es la periodicidad de estos mismos? ¿Qué mas hay a parte de las estrellas en el universo? ¿De donde somos? ¿Hacia donde vamos? Todas estas preguntas y mas se originaron muy probablemente al observar la noche estrellada. Hoy en día seguimos haciendonos estas preguntas y gracias a los avances de la física podemos contestar con certeza algunas de estas preguntas.

§1. Historia

De acuerdo a las historias de la primer civilización que apareció en el globo terraquio, Mesopotamia, una montaña cósmica se formó en el mar, hecha de la perfecta no diferenciación del dios del cielo, llamado Anu y la diosa de la tierra llamada Ki. Anu y Ki dieron

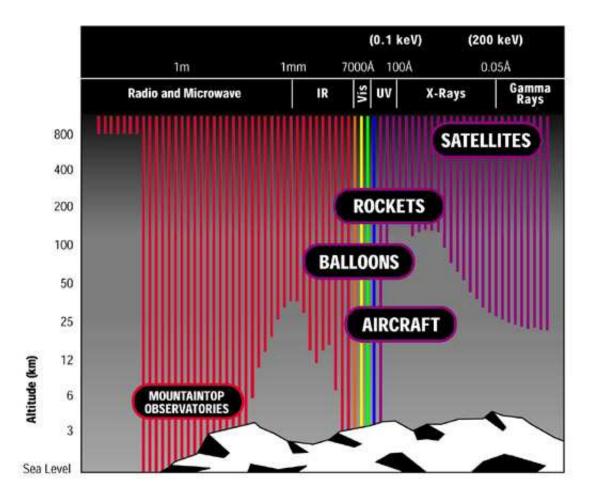


Figura I.1: La radiación electromagnética es absorbida por la atmósfera terrestre. La figura muestra la penetración de la radiación electromagnética en la atmósfera terrestre como función de la altura sobre el nivel del mar.

nacimiento a Enlil, el dios del aire y la tormenta. Este nacimiento produjo la separación entre la tierra y el cielo. Anu, el padre, cargaba el cielo, mientras que Enlil, el hijo cargaba a la tierra: su madre. El dios de la luna, llamado Sin fue el hijo de el dios del aire y otra diosa de la tierra llamada Ninlil. Junto con su madre y la ayuda de Enki, el dios del agua, Enlil produjo plantas y animales. Hombres y mujeres fueron procreados mediante la unión de la diosa del mar Nammu, la diosa de la tierra Ki y el dios del agua Enki. El dios del sol, Utu y la diosa Venus Inanna son los hijos del dios de la luna.

Esta es la versión mas antigua (~ 2500 AC) de la creación según los Mesopotamios.

§1 HISTORIA 19

Evidentemente la continua observación del cielo llevó a esta y a muchas mas civilizaciones de la historia a crear historias sobre los orígenes del universo.

La diferenciación entre el cielo y la tierra fue dada por algunas civilizaciones. Otras mas, como los mesoamericanos les consideraban como un solo objeto: cielo y tierra eran una misma entidad.

Los somarios, la civilización al sur de Mesopotamia (en lo que ahora sería Kuwait) y mas o menos contemporánea a la misma, eran astrónomos expertos. Inventaron la unidad del grado como una medida angular y gustaban del sistema sexagesimal, además de que 360 era casi el número de días del año.

Los griegos comenzaron a tener importantes astrónomos alrededor del siglo IV AC. Fue Hicetas de Siracuse quien, para explicar el movimiento aparente de las estrellas, enseño a sus estudiantes que la tierra estaba girando alrededor de su propio eje. Más tarde Aristarcus de Samos en el siglo tercero AC creía que el sol era el centro del universo y que había objetos como la tierra que rotaban alrededor del sol, junto con la tierra. La luna era la excepción y rotaba alrededor de la tierra. Aristarcus formuló la hipótesis de que la razón por la cual la luna mostraba solamente la mitad de un circulo en media luna era porque el sol, la luna y Aristarcus formaban un triángulo rectángulo. De esta manera, Aristarcus concluyo que el sol estaba veinte veces mas alejado de la tierra que lo que la luna lo estaba (de hecho, el resultado correcto es de 400 veces). Esta fue quizás la primer medición extraterrestre de la historia del hombre.

Eratostenes, el bibliotecario real de la biblioteca de Alejandría en el siglo II AC, sabía que en Siena (la ciudad Egipcia que ahora corresponde a Asuán) existía un poso seco que tenía la propiedad de que en el solsticio de verano al medio día no se producía sombra en su parte interior. Esto se debe a que Asuán se localiza justamente en el trópico de Cáncer y por lo tanto el sol se encuentra justo en el zenit (o el punto central en el cielo) en el solsticio de verano. En uno de los solsticios de verano, Eratóstenes midió la sombra producida por una vara alta al colocarla de manera vertical en Alejandría y calculó el ángulo producido por la distancia de Siena y Alejandría ya que estas están básicamente a la misma longitud. Eratóstenes calculo la distancia entre Alejandría y Siena utilizando como base el tiempo que se tardaba un camello en recorrer ambas ciudades. Así el bibliotecario de Alejandría pudo calcular el radio de la tierra y falló tan solo por 5 % del valor aceptado actualmente.

Hiparcus trabajó en la isla de Rodas en el siglo II AC. Él construyó un sistema geocéntri-

co que permitía predecir la posición de las estrellas y los planetas con la precisión suficiente para cualquier viaje en alta mar. Hiparcus descubrió la precesión de los equinoccios debida a la precesión periódica (con un periodo de 26 000 años) de la tierra sobre su propio eje de rotación.

En el siglo II DC, Claudius Ptolomeo sistematizó la trigonometría y con ello fue posible la construcción de varios mapas de manera precisa. De hecho Ptolomeo trabajó bastante en dibujar mapas con excelente precisión de todo Europa, parte de África e India.

El cristianismo oscureció todas las ideas de los griegos y las ideas de que la tierra era plana resurgieron fuertemente. No fue sino hasta que en el siglo XVI Nicolás Copernico intentó simplificar el sistema epicíclico de círculos concéntricos diseñado por Hiparco, que las cosas comenzaron a cambiar. Copernico tenía acceso a diversos manuscritos de la antigua Grecia y así tuvo la oportunidad de revolucionar el pensamiento de su época. El propuso que todos los planetas, incluyendo a la tierra giraban alrededor del sol (teoría heliocéntrica).

En el siglo XVI, el último de los astrónomos que utilizaron solamente sus ojos para realizar sus observaciones, Tycho Brahe, era patrocinado por el rey de Dinamarca. A la muerte del rey, Tycho Brahe se mudó a Praga y contrató de asistente a Johannes Kepler. A diferencia de Tycho Brahe, quien creía en la teoría geocéntrica del universo, Kepler siguió los pasos de Copernico y con las ideas de la teoría heliocéntrica del universo y utilizando las observaciones de Brahe construyo tres leyes fundamentales del movimiento de los planetas alrededor del sol. Años mas tarde y bajo un intenso trabajo teórico, Isaac Newton en Cambridge Inglaterra fue capaz de explicar las leyes de Kepler a partir de su teórica de gravitación.

En el siglo XVII, Edmund Halley adivinó de manera correcta que la trayectoria parabólica de los cometas era quizás una elipse excesivamente elongada y por lo tanto, debería existir una periodicidad por la cual estos objetos aparecen en el cielo. Su predicción no fue confirmada sino hasta después de su muerte. El famoso cometa Halley lleva su nombre y es observado cada 76 años aproximadamente.

En el siglo XIX se realizaron tres trabajos que sin lugar a dudas dieron los fundamentos a la astronomía moderna. El primero de ellos fue en 1838, cuando Friedrich Bessel reportó la medición del paralaje trigonométrico de la estrella 61-Cygni. Más adelante, en este capítulo analizaremos los conceptos de paralaje trigonométrico para encontrar la distancia a diversas estrellas utilizando estrellas fijas en el campo de fondo de visión y el

movimiento de traslación elíptico de la tierra alrededor del sol. Para el año 1900 se tenían registrados alrededor de cien paralajes de estrellas cercanas. Con esto quedo claro que las estrellas en el firmamento eran objetos semejantes al sol. El segundo paso fue dado por Gustav Kirkchhoff, quién en los 1850s observó 30 diferentes elementos químicos en el sol identificando las líneas de absorción que se presentaban en su espectro electromagnético. Durante este siglo, el catalogar líneas espectrales fue una de las tareas mas fuertes llevadas acabo. Gracias a esto se pudo tener un amplio conocimiento de la estructura estelar durante los principios del siglo XX. Finalmente, gracias al invento de la placa fotográfica en 1839 la astronomía dio un giro tremendo. Fue William Herschel quién tomó las primeras fotografías del telescopio de su padre en Inglaterra. Con esto, Hershel descubrió el planeta Urano y los asteroides. Catalogó alrededor de 2000 nebulosas y descubrió varios satélites de Urano y Saturno. También descubrió la existencia de estrellas binarias. Fue justamente en el siglo XIX cuando la combinación de fotografía y la espectroscopía lo que dio origen a la rama de la física conocida como la astrofísica.

§2. Astronomía en Mesoamérica

No quiero continuar sin antes mencionar la importancia que tuvo para nuestros antepasados en Mesoamérica el desarrollo astronómico. Antes que nada, es importante aclarar que estas observaciones se realizaron con ayuda de los ojos e instrumentos para marcar ciertas posiciones de los astros. Con el paso de los siglos y haciendo observaciones precisas se opto por amalgamar la astronomía con construcciones formando lo que hoy en día se denomina arqueo—astronomía.

Una de las razones por las cuales se conoce el alto nivel de observación astronómica en mesoamérica es debido a la creación de calendarios, como el calendario Maya. Este calendario está dividido en tres categorías: tzolkins que son los años sacros o naturales. Estos están compuestos por 13 periodos (meses) de 20 días cada uno. Los haabs que son los años solares poseen 18 meses de 20 días cada uno. Se siguen de una cuenta especial de cinco días que se llamaban uayeb en donde se representaban diversas festividades. También los mayas dividían su calendario en unidades de 20, 360, 7200 y 144000 días. A esta última se le denominó la cuenta larga. Las dos primeras divisiones fueron hechas por todas las civilizaciones de México. Las dos primeras cuentas coinciden cada 52 años, que se celebraba

con una fiesta grande. La cuenta larga permitió a los mayas escribir el día de la creación: el 13 de agosto del año 3114 AC.

Existen algunos juegos calendarios que fueron de suma importancia para los mesoamericanos. Por ejemplo, los teotihuacanos tenían como días especiales el 29 de abril y el 13 de agosto. En estos días la pirámide del sol se alinea con el disco solar (y esto mismo sucede con una gran cantidad de monumentos prehispanicos en mesoamércia). Esto se debe a lo siguiente. A partir del 29 de abril el observador tiene que esperar un intervalo de 52 días para llegar al solsticio de verano (21 de junio). 52 días mas tarde se llega al 13 de agosto. Esta última fecha indica el comienzo del calendario solar de 365 días. Cuando la alineación solar sucede en dirección opuesta a la de las estructuras anteriores, se obtienen fechas de gran importancia: el 12 de febrero y el 29 de octubre. En estas fechas, se observan diversos alineamientos con el sol al amanecer. Existen otras dos parejas de números que utilizaron los mesoamericanos: el 9 de abril con el 2 de septiembre y el 4 de marzo con el 9 de octubre. Por ejemplo, el templo mayor de Tenochtitlan en la Ciudad de México y que está orientado al poniente se alinea con el disco solar el 9 de abril y el 2 de septiembre. Justamente el 9 de abril y el 2 de septiembre dividen al año solar en una proporción de 2/3. En otras palabras, después de la primera alineación en el año, 73 días mas tarde se llega al solsticio de verano y la segunda alineación ocurrirá 73 días posteriores a esto. A partir de esta alineación se tiene que esperar 3 veces 73 días (= 219 días) para que con la siguiente alineación se complete el año solar. El número 73 es un número fundamental para las culturas mesoamericanas. Por ejemplo, en el calendario solar de 365 días y el calendario corto de 260 días coincidían en un intervalo de 52 años solares como se mencionó anteriormente. Esto ocurre justamente cuando el calendario corto de 260 días ha dado exactamente 73 vueltas. Por si fuera poco, el periodo sinódico (tiempo que tarda un objeto en completar una órbita sobre la bóveda celeste) del planeta Venus es de 584 días que se obtiene de acumular 8 periodos de 73 días. Por ejemplo, en el templo mayor debido a que la altura de su horizonte hacia el oriente es muy parecida a la del poniente, se obtienen alineaciones maravillosas al salir el sol y al ocultarse. Las fechas de alineación del templo mayor de 4 de marzo y 9 de octubre dividen de forma igual al año de 365 días. en un intervalo de 2 veces 73 y 3 veces 73 en relación al solsticio de invierno. Esta posición este-oeste elegida con gran precisión para que estos alineamientos ocurrieran en el Templo Mayor de Tenochtitlan fueron escogidas premeditadamente. Esto pone en duda duda la historia de los Mexicas de encontrar un águila devorando una serpiente sobre un nopal.

Podríamos seguir analizando diversas construcciones como el observatorio del Caracol construido por los Mayas y no acabaríamos. Sin embargo, quiero concluir mencionando la existencia de observatorios solares en diversos lugares, en donde se presenta una orientación astronómica conocida como la hierofanía: la iluminación de lo sagrado. Esto es un juego de luz y sombra que muestra el poder de los astrónomos mesoamericanos. Quizás el mas famoso de todos estos es el que ocurre en la pirámide de Kukulkan en Chichén Itza. En los días del equinoccio al atardecer, los nueve cuerpos de la pirámide proyectan una sombra sobre la balustrada de la escalinata norte, con lo cual se forma el cuerpo luminoso de una serpiente cuya cabeza de piedra se encuentra en la base de la balustrada como lo muestra la fig.I.2. Esto representa el descenso hacia la tierra del dios Kukulcán o Quetzalcóatl en forma de serpiente de luz. Pero la hierofanía se presenta también en otros lugares como en Malinalco donde los rayos solares a medio día del equinoccio alumbran a la serpiente Huitzilopochtli en su descenso a la tierra.

Figura I.2: La figura muestra la hierofanía que en el solsticio de verano en la pirámide de Kukulkan de Chichén Izta. El cuerpo luminoso de la serpiente es evidente gracias a la proyección de los nueve cuerpos de la pirámide en la escalinata.

§3. Astrofísica relativista

Hoy en día no es posible encontrar una marcada diferencia entre la astronomía y la física. En el pasado, cuando los astrónomos solamente se interesaban por movimientos del cielo, los físicos prestaban poca atención a los fenómenos del universo. La situación cambió radicalmente desde que se comenzaron a realizar observaciones en frecuencias de radio desde la tierra y en el espacio en otras longitudes de onda, con el uso de satélites. Al estar en el espacio, y así deshacerse de la capa de la atmósfera, se reciben señales provenientes incluso de de rincones lejanos del universo. Esta información es recibida como radiación electromagnética y como flujos de partículas (electrones, protones, neutrinos, etc.). A finales de la primera década del siglo XXI estarán listos diversos experimentos, unos en órbita alrededor de la tierra, otros sobre la tierra, que intentarán explorar no solamente los flujos de radiación y de partículas que hasta ahora hemos observado. Estos experimentos servirán para la observación de ondas gravitacionales producidas por fenómenos altamente energéticos, como el amalgamiento de dos agujeros negros, el orbitar de una estrella de quarks alrededor de un agujero negro, etc.

Albert Einstein a principios del siglo XX modificó la forma de entender la dinámica del movimiento descrita por Isaac Newton en el siglo XVII. Esta teoría, la llamada teoría especial de la relatividad cambió considerablemente todos nuestros conceptos de observación de las leyes del universo. Einstein formuló esta teoría de manera teórica. A la fecha, esta teoría ha pasado todas las pruebas experimentales a las que ha sido sometida. Diez años después de la creación de la teoría especial de la relatividad, Einstein formuló una teoría gravitacional basada en su teoría especial. Él mismo la denominó, la teoría general de la relatividad.

Einstein era una persona muy modesta y solía decir que si el no hubiera formulado la teoría especial de la relatividad, en unos cuantos años alguien mas lo hubiera hecho. Sin embargo, cuando construyó su teoría general, dijo también lo mismo, pero en vez de unos cuantos años dijo que hubiera tardado alrededor de unos sesenta años. Curiosamente, esto coincide con el renacimiento de la gravitación en la década de los 1960s y el surgimiento de la astrofísica relativista como una de las ramas mas sólidas de la física.

Unos meses después de la publicación de la teoría de la relatividad general, Karl Schwarzschild, quien servía a las fuerzas armadas alemanas en el frente ruso durante la primera guerra mundial, formuló la primer solución a las ecuaciones de Einstein: la solución de la gravedad producida por una distribución de masa esférica, como la de una estrella.

En la segunda década del siglo XX, el joven meteorólogo, Alexander Friedman encontró soluciones a la dinámica del universo utilizando la teoría general de la relatividad de Einstein. Sus soluciones mostraron un universo dinámico (i.e. con movimiento), por lo que Einstein mismo introdujo una constante antigravitacional (la famosa constante cosmológica) en las soluciones para obtener un universo estático. Mas tarde, con los descubrimientos de Edwin Hubble, donde se mostraba un universo en movimiento, Einstein aceptó su error y lo denominó el error mas grande de toda su vida.

En los 1930s el joven de 19 años, Subrahmayan Chandrasekhar, durante un viaje en barco de India a Inglaterra investigó la posibilidad de mezclar las ideas de la teoría especial de la relatividad con las ideas de la fresca teoría cuántica, así como sus conocimientos de astronomía. De esta manera predijo la existencia de estrellas pequeñas (~ 10 km) con campos gravitacionales excesivamente fuertes, denominadas hoy en día comúnmente como enanas blancas. De la misma manera, para finales de la década de los 1930s, después de anunciarse el descubrimiento del neutrón, el joven Lev Davidovich Landau (el último físico que dominó absolutamente todas las ramas de la física teórica) idealizó otro tipo de estrellas similares a las enanas blancas, pero formadas principalmente de neutrones. Estas estrellas se denominan hoy en día como estrellas de neutrones.

La época de oro de la astrofísica relativista se llevó acabo en la década de los 1960s, cuando en tres países, Inglaterra, la Unión Soviética y los Estados Unidos de América se formaron tres de los grupos mas famosos en la historia de la física. Por la parte Inglesa, Dennis Sciama en Cambridge formó su grupo junto con sus estudiantes Stephen Hawking, Roger Penrose, Martin Rees y Joseph Silk entre otros. Por la parte Soviética, Yakov Borisovich Zel'dovich, uno de los educados por Lev Davidovich Landau, y que tuvo que ver con la construcción de la bomba de hidrógeno, formó su grupo con Igor Novikov y Andrei Doroshkevich entre otros. Este grupo soviético ha sido el grupo mas fuerte y sólido en toda la historia de la astrofísica relativista. Su producción fue grandiosa. Por la parte Americana, en Princeton, John Wheeler, estudiante de Albert Einstein junto con sus estudiantes Kip Thorne, Charles Misner y otros, formaron el tercer gran grupo de astrofísica relativista. Hoy en día diversos grupos se han derivado de estos tres y todos, de una u otra

manera están influenciados por el trabajo y las ideas que estos primeros grupos plantearon.

§4. Constituyentes básicos del universo

El sistema solar representa nuestro vecindario. Está constituido por una estrella, el sol y diez planetas. Nosotros estamos en el tercer planeta, contando desde el sol para afuera. Existe un cinturón de asteroides entre Marte (el cuarto planeta) y Júpiter (el quinto planeta). Todos los planetas giran alrededor del sol en órbitas que se desvían ligeramente de círculos. Existe una precesión notable del planeta Mercurio (el primer planeta) sobre su propio eje (~ 52 arcsec/siglo) que se debe a efectos relativistas producidos por el sol y Mercurio, en el espacio-tiempo. Saturno (el cuarto planeta en la lista) se encuentra diez veces mas lejos de la tierra que la distancia tierra-sol. Además de planetas y asteroides, existe gas (principalmente Hidrógeno) de baja densidad entre cada planeta. También existen campos magnéticos y se encuentran partículas que se mueven a velocidades relativistas que cruzan el sistema solar. Estas partículas, los famosos rayos cósmicos, fueron producidos y acelerados en el centro de agujeros negros supermasivos o en explosiones supernovas.

Las estrellas cercanas a nosotros son estrellas rojas frías, que se parecen mucho a nuestro sol, quién por cierto es tan solo una estrella típica, común y corriente. Las masas (m) de estas estrellas cercanas tienen valores en el rango de $2\,\mathrm{M}_\odot\lesssim\,\mathrm{m}\lesssim10\,\mathrm{M}_\odot$, en donde el símbolo M_\odot representa la masa del sol. La estrella mas cercana, Alfa Centauri, se encuentra a una distancia de la tierra de $\sim30\,000$ veces mas grande que la distancia Tierra-Júpiter. De hecho esta estrella se encuentra a 4.3 años-luz de distancia de la tierra de la tierra†. La densidad de estrellas en nuestro alrededor es aproximadamente de 50 estrellas por ~17 años-luz cúbicos, centrados alrededor del sol.

La galaxia (o nuestra galaxia, la Via Lactea) es un conglomerado de estrellas con tamaño $\sim 20\,000$ veces mas grande que la distancia entre tierra-sol. Nuestra galaxia tiene forma espiral, similar a la galaxia de Andrómeda que se muestra en la fig.I.3, y contiene $\sim 10^{11} = 100\,000\,000\,000\,000$ estrellas. Existe un problema esencial en el estudio de la galaxia, no es fácil observar su forma pues estamos dentro de la misma. Esto es similar al problema de mapear un laberinto complicado una vez que uno está dentro del mismo. Preguntas que

 $^{^\}dagger$ Un año—luz es la distancia que recorre la luz (que viaja a $\sim 300\,0000\,\mathrm{km/s}$). Como referencia, siempre es útil saber que la distancia tierra—sol es de 8.3 años—luz.

parecerían tan simples como: ¿Donde se encuentra el centro de la galaxia? no son simples de contestar, pero se puede dar una buena aproximación observando los movimientos de las estrellas de nuestra galaxia.

En 1926, el astrónomo Edwin Hubble mostró que los objetos como la nebulosa de Andrómeda eran como islas de estrellas en el universo, similares a nuestra galaxia. Las galaxias fueron clasificadas por Hubble en dos esquemas principales: espirales (como Andrómeda) y elípticas (galaxias esferoidales) como Virgo-A que se muestran en la fig.I.4. Finalmente, galaxias que no parecen elípticas ni espirales se denominan irregulares. La distribución de luz en las galaxias elípticas es suave, no contienen barras ni discos centrales. Mas adelante hablaremos de esta clasificación y su importancia a nivel cosmológico. Las galaxias constituyen los cimientos fundamentales del universo, es decir, estas forman los pilares esenciales de la estructura del universo.

Existen galaxias que dan origen a los fenómenos mas energéticos del universo y aunque su clasificación cae dentro de los géneros descritos por Hubble, han sido también catalogadas de otra manera. Estas galaxias se denominan genéricamente como Núcleos Activos de Galaxias (NAG) y en ocasiones aparecen como objetos estelares en placas fotográficas. Por esta razón son en ocasiones denominados objetos cuasi-estelares o cuasáres. Estos cuasares y sus primos relativos mas energéticos los blazares son los objetos mas energéticos del universo que conocemos.

Las galaxias en el universo se encuentran concentradas en lo que se conoce como cúmulos de galaxias. Estos cúmulos son las estructuras amarradas de forma gravitacional mas grandes que conocemos en el universo. En ocasiones, estos cúmulos llegan a tener unos cuantos miles de galaxias en su interior. Tamaños típicos de estos cúmulos son del orden de 50 veces el tamaño de la galaxia. La mayoría de las galaxias no se encuentran en cúmulos de galaxias. Estas se encuentran como objetos aislados en el universo.

La distribución de las galaxias en el universo resulta importante para analizar la estructura a gran escala del universo. Resulta que las galaxias se encuentran distribuidas en una manera un tanto cuanto aleatoria, es decir, no es uniforme en escalas que van mas allá de las escalas de cúmulos galácticos. Al mapear todas las galaxias visibles en un mapa, se observan agujeros (regiones sin galaxias), filamentos y planos (estos últimos dos, son estructuras formadas por galaxias). La fig.I.5 representa las observaciones hechas por el "Center for Astrophysics" (CfA) de la Universidad de Harvard. Nuestra propia galaxia

Figura I.3: Imagen de nuestra galaxia vecina Andrómeda, también conocida como M31 o NGC 224 dependiendo del catalogo donde ha sido observada. Esta galaxia se parece mucho a la nuestra, pero ligeramente mas grande.

se encuentra en el centro del diagrama y la bóveda celeste ha sido mapeada dentro del círculo que se observa en la figura. En el diagrama se observan varias líneas radiales formadas por galaxias que apuntan hacia nuestra galaxia. Estas líneas son representaciones de la existencia de un cúmulo de galaxias. Todas las galaxias en estas líneas se encuentran amarradas gravitacionalmente y los miembros del cúmulo tienen dispersiones de velocidad suficientemente grandes, como para que se vea una disminución en su distancia radial, como consecuencia del efecto Doppler, a pesar de que se encuentran a la misma distancia. Estas líneas se denominan frecuentemente los dedos de dios. En la parte superior del diagrama, se observa también una cadena de galaxias grandes que cubre casi toda la región mapeada. Esta región se denomina la gran pared. Con este mapeo se obtiene una buena

Figura I.4: Imagen óptica de la galaxia elíptica M87 (NGC 4486), mejor conocida como Virgo-A.

información sobre la topología del universo. El universo tiene una estructura como la de una esponja. Las galaxias representan un pedazo de la esponja y se encuentran unidas entre si por filamentos, pedazos mas grandes. Además tienen entre sí pedazos vacíos que también están unidos entre sí, una característica de la topología de una esponja en tres dimensiones, que no poseen las esponjas de dos dimensiones. Finalmente, el tamaño del universo es alrededor de 50 veces el tamaño de los agujeros vacíos en el universo, como los que se muestran en el mapeo de las campanas. Cuando estudiemos cosmología, veremos a que nos referimos con el tamaño del universo y como se mide el mismo.

§5. Radiación de fondo

Una de las formas más útiles para entender el universo y sus constituyentes es analizar los mapas que se construyen con la radiación de fondo. Lo que se hace es mapear la radiación que se observa en la bóveda celeste, en un cierto intervalo de frecuencias (digamos en radio) y ponerlo en un mapa de dos dimensiones, similar a los mapas bidimensionales que representan el globo terráqueo. La proyección mas utilizada para representar el globo terráqueo es la proyección de Mercator. El mapeo consiste en que cada punto sobre la esfera terrestre es mapeado a un plano de dos dimensiones finito (un rectángulo), de tal forma que las dimensiones cerca del ecuador son preservadas a consecuencia de que las escalas cerca de los polos se aumentan. Esta proyección no es la única posible. Existen diversas formas de mapear el globo terrestre. Una de ellas es conocida como la proyección Hammer-Aitoff que consiste en poner a los puntos de la superficie terrestre en una elipse de tal forma que las latitudes y longitudes se curven como lo muestra la fig.I.6. Al igual que en la proyección de Mercator, los países representados en los polos presentan distorsiones geométricas, mientras que los cercanos al ecuador aparecen correctamente. Este mapeo tiene la propiedad de que conserva el área. En otras palabras, un área de tamaño unidad es mapeada a un área de tamaño constante. Los astrónomos utilizan diversas modificaciones (dependiendo del experimento en cuestión) de la proyección Hammer-Aitoff que es una proyección de la bóveda celeste hacia una elipse donde se conservan (en ocasiones solo aproximadamente) las áreas. La manera usual de mapear la bóveda celeste es la siguiente. Se escogen unas coordenadas (coordenadas galácticas) de tal manera que el plano de nuestra galaxia (víaláctea) coinsida con el ecuador en la proyección de Aitoff. El punto que corresponde al

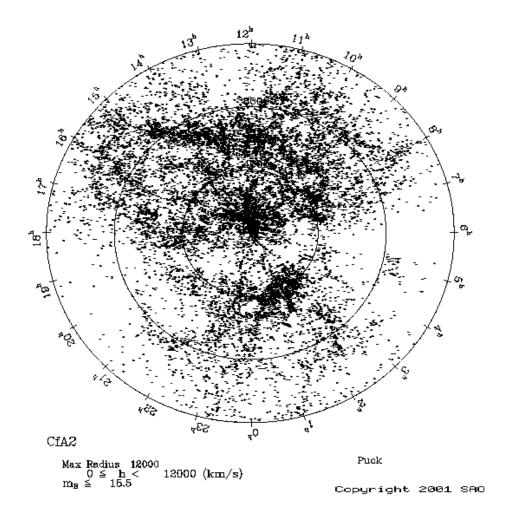


Figura I.5: Mapeo de todas las galaxias observables en la bóveda celeste. El mapeo fue hecho por el Harvard-Smithsonian Center for Astrophysics. La figura muestra las galaxias que se observan como función del corrimiento al rojo (i.e. distancia). La figura es una proyección polar del corrimiento al rojo (radio) como función del ángulo de asención en el plano del cielo. Esta y otras imágenes se encuentran disponibles en http://cfa-www.harvard.edu/~huchra/zcat.

centro de la galaxia en la boveda celeste es puesto en el centro de la elipse. El polo norte galáctico y el polo sur galáctico son colocados en el polo norte y sur de la elipse.

La fig.I.7 muestra como se ve el cielo en el intervalo de frecuencias óptico. Evidentemente lo que mas resalta a la vista es la parte ecuatorial, donde se ve un gran manchón blanco. Este

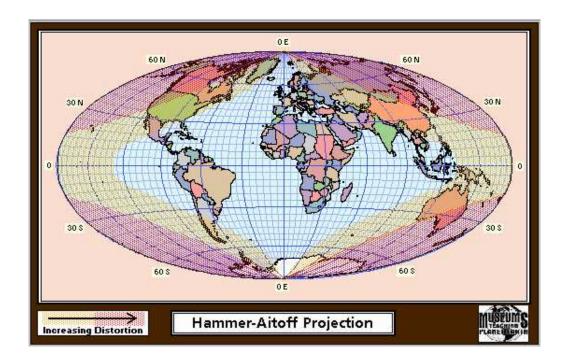


Figura I.6: La superficie de la tierra en un mapa elíptico. La proyección se denomina Hammer-Aitoff y el mapeo es tal que preserva áreas a costa de distorsionar el polo norte y sur.

manchón lo produce el plano de nuestra propia galaxia, la famosa via-láctea. Esta figura del cielo fue tomada de 51 fotos de ángulo ancho tomadas individualmente en California y Sudáfrica. Las imagenes fueron tomadas con una cámara fotógrafica con un lente de 28 mm y una apertura del diafragma a f/4. El tiempo de exposición fué de 30 a 45 minutos por placa fotográfica. Es claro que lo que domina en el mapa es el plano de la galaxia, donde gas y estrellas producen la famosa vía-láctea. La mayoría de la luz que se observa en esta imagen se debe a estrellas y gas que radian a temperaturas de entre $3\,000-10\,000\,\mathrm{K}$. En la figura se muestran las nubes de Magallanes pequeña y grande en la parte inferior derecha del plano galáctico.

Hacia el rango de altas energía, la fig.I.8, muestra la bóveda celeste en rayos-X. Debido a que los objetos que radian en rayos-X deben poseer temperaturas $\sim 10^7$ K, no existen tantos objetos en el plano galáctico. De hecho, casi toda la radiación proviene de objetos extragalácticos. Las fuentes de rayos-X galácticas son producidas esencialmente por dos

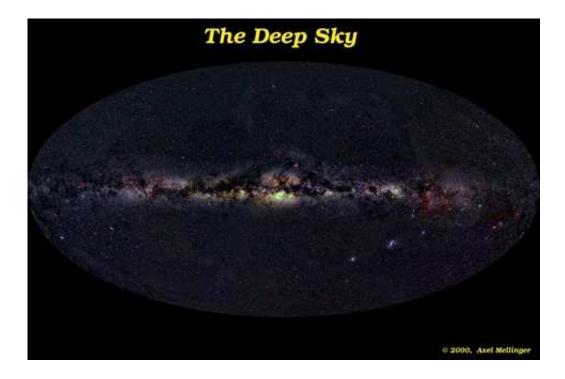


Figura I.7: La figura muestra el panorama del cielo utilizando la proyección de Aitoff. El plano de nuestra galaxia (línea horizontal que cruza el centro de la elipse) muestra la vía láctea. En la figura, la vía-láctea es clara, así como las nubes de Magallanes en la parte inferior derecha. La imagen fue tomada y es ©2000 Axel Mellinger (home.arcor-online. de/axel.mellinger).

mecanismos. El primero se debe a la producción de rayos—X debido al arrastre gravitacional por parte de una estrella sobre otra en un sistema binario. El segundo mecanismo de se debe a los remanentes de explosiones supernovas. Casi toda la emisión en rayos—X fuera del plano galáctico es producida por núcleos activos de galaxias a grandes distancias. También se observan algunos cúmulos de galaxias que contienen grandes cantidades de gas caliente en el espacio entre galaxias.

La fig.I.9 muestra la bóveda celeste en rayos- γ , la radiación mas energética en el espectro electromagnético. Lo que muestra el mapa es que casi toda la radiación en esta frecuencia se encuentra en el plano galáctico. Esto se debe a la presencia de partículas con muy altas energías, que se mueven a velocidades cercanas a las de la luz entre las estrellas. Estas partículas son similares a los rayos cósmicos que se detectan en lo mas alto de la

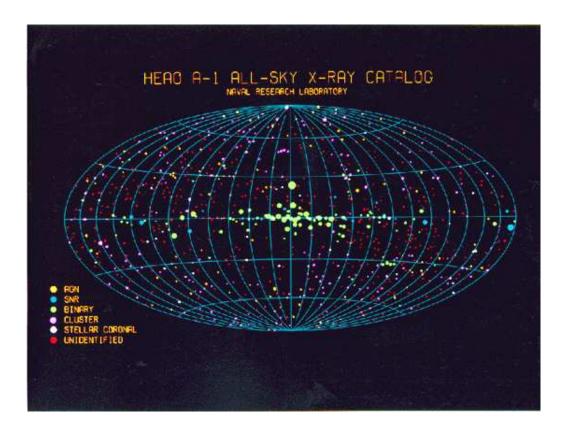


Figura I.8: Una imagen de rayos-X (hasta energías de $\sim 1 \, \text{keV}$) de todo el cielo obtenida con el satélite HEAO-1. Es claro que la galaxia no es un notable emisor en esta frecuencia.

atmósfera terrestre con la ayuda de satélites y globos artificiales. Los rayos— γ se producen mediante la colisión de estas partículas de altas energías y el frío gas del medio interestelar. Fuera del plano galáctico se observan eventos de rayos— γ aislados y de duraciones pequeñas (desde unos cuantos ms hasta unos 10^3 s). Estos eventos están asociados con los fenómenos energéticos mas violentos del universo. Se denominan destellos de rayos— γ . Justo ahora se está decidiendo quienes son los progenitores de tales eventos, pero todo indica que se debe a explosiones catastróficas probablemente ocurridas por el amalgamiento de dos objetos gravitacionales compactos como un par de estrellas de neutrones, o una estrella de neutrones con un agujero negro, etc.

Hacia la parte de energías mas bajas que el óptico se encuentran la banda infrarroja como lo muestra la fig.I.10. Al igual que en los rayos $-\gamma$ se observa que la radiación

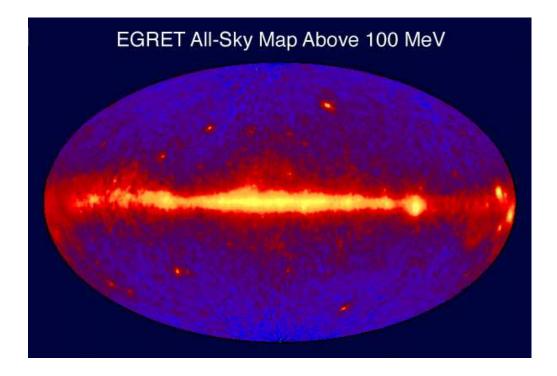


Figura I.9: Imagen de la bóveda celeste en rayos-γ obtenida con el satélite EGRET. La emisión producida por la galaxia se debe a radiación sincrotrónica y no a procesos térmicos. La figura muestra radiación con energías mayores a 100 MeV. Para una mayor información sobre todos los mapas del cielo a altas energías, revisa http://cossc.gsfc.nasa.gov/images/epo/gallery/skymaps.

está dominada por la parte central del diagrama. Esta radiación es producida por el polvo † frío del medio interestelar que se encuentra a temperaturas alrededor de $60-100\,\mathrm{K}$. A pesar de que el gas no es muy caliente, este tiene que calentarse o se enfriaría hasta alcanzar una temperatura muy baja radiando toda su energía interna. Lo que sucede es que son las estrellas –sobre todo las de formación reciente y las que están muriendo— las que inyectan energía a este gas para mantener temperaturas del orden de $100\,\mathrm{K}$. Los granos de polvo en el medio interestelar absorben la radiación óptica y ultravioleta proveniente de las estrellas y la reemiten en el infrarrojo. Por esta razón el estudio del universo en la

[†]Los astrónomos llaman polvo a particulas del orden de 1 μm que tienen formas irregulares de carbón y/o silicatos. Estos granos, que se encuentran en el medio interestelar, se encargan generalmente de absorber radiación. Por ejemplo, una de las razones por las cuales se observan manchones negros en la via-láctea y otras galaxias es justamente porque la radiación de sus estrellas ha sido absorbida por el polvo interestelar.

banda infrarroja es de suma importancia: provee a los astrónomos con herramientas para analizar la formación estelar en los rincones mas lejanos del universo.

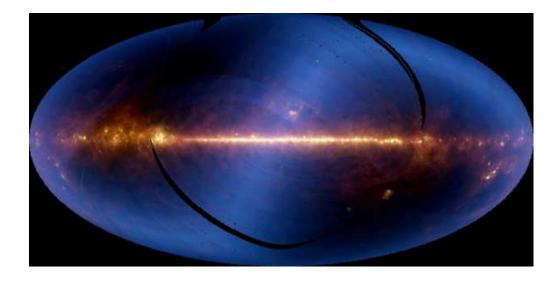


Figura I.10: El mapa de la bóveda celeste en proyección de Aitoff muestra el intervalo entre 60 y 100 μm. Las observaciones fueron hechas por el satélite IRAS. Es notoria la radiación del polvo interestelar en el plano de la galaxia a estas frecuencias. Mayor información sobre el cielo en infrarrojo se encuentra en http://www.ipac.caltech.edu/Outreach/Gallery.

Mientras nos movemos a longitudes de onda mas largas comenzamos a observar objetos mas fríos. Por ejemplo, la fig.I.11 muestra la bóveda celeste observada en la banda del milimétrico por el satélite COBE (Cosmic Background Explorer). Esta radiación es producida por los remanentes de la expansión del universo que se observan hoy en día a una temperatura de ~ 3 K. La imagen muestra dos claras zonas, la zona superior es mas intensa que la zona inferior. Esto es un efecto de visión debido al movimiento de la tierra a través de la radiación de fondo en microondas. De tal manera que si se elimina este efecto Doppler, se obtiene la imagen inferior de la fig.I.11. Una perfecta homogeneidad e isotropía de la radiación de fondo. Resulta que esta isotropía se da a resoluciones de una parte en 10⁵. A esta escala, pequeñas fluctuaciones (desviaciones) de la isotropía de la radiación son observables. La fig.I.12 muestra estas irregularidades observadas por el satélite WMAP (Wilkinson Microwave Anisotropy Probe). Estas fluctuaciones son cruciales en el estudio

de cosmología como veremos mas adelante. El espectro de esta radiación es un cuerpo negro, de hecho resulta ser el mejor cuerpo negro que conocemos de la naturaleza.

Al observar el cielo a frecuencias aún mas cortas, llegamos a las ondas de radio. La fig.I.13 muestra la bóveda celeste a una radio frecuencia de 408 MHz. De nueva cuenta se observa que el plano galáctico está dominado por radiación en ondas de radio. Sin embargo, esta radiación no se debe a gas frío. Esta radiación es producida por electrones de altas energías que se mueven a velocidades ultra-relativistas y que giran alrededor del campo magnético de la galaxia. A este tipo de radiación se le denomina radiación sincrotrónica, pues fue primeramente observada en los aceleradores de partículas terrestres denominados sincrotrones. El hecho de que exista radiación de este tipo en nuestra galaxia significa que existe un campo magnético asociada a la misma. Igualmente, los núcleos activos de galaxias resultan emitir radiación sincrotrónica a diversas radio-frecuencias y esto es lo que se observa a lo lejos del plano galáctico en la fig.I.13. El estudio de la radiación sincrotrónica en los núcleos activos de galaxias es esencial en el entendimiento de los fenómenos que se llevan a cabo en estos objetos.

§6. Mediciones en astrofísica

Para finalizar esta parte introductoria, veamos brevemente la manera en que los astrónomos miden algunas cantidades fundamentales en la astrofísica.

Las estrellas cercanas a nosotros forman una trayectoria elíptica en la bóveda celeste a lo largo de un año con respecto a estrellas distantes que parecen no moverse en el plano del cielo. Este movimiento elíptico se debe a la rotación de la tierra alrededor del sol. El ángulo que subtiende el semi-eje mayor de la elipse a partir de la estrella en cuestión se denomina paralaje θ y está representado en la fig.I.14. Se dice que un objeto se encuentra a una distancia de un parsec (pc) si su paralaje es de 1 arcseg. Si en la fig.I.14 θ = 1 arcseg entonces, como la distancia sol-tierra (definida como una unidad astronómica cuyo símbolo es AU) es de 8.3 min-luz \sim 1.5 \times 10¹¹ m, se obtiene que 1 pc \approx 3 \times 10¹⁶ m \approx 3 años-luz. El primer paralaje de una estrella fue medido en 1837 por Bessel y corresponde a 1.2 arcseg para la estrella mas cercana, Próxima Centauri. Hoy en día el satélite Hipparcos ha medido paralajes de la gran mayoría de estrellas observables hasta una distancia de \sim 100 pc.

Las velocidades radiales de una estrella o cualquier otro objeto radiante puede ser medida utilizando el corrimiento al rojo que produce el efecto Doppler en el espectro óptico. Esto consiste en observar las líneas de emisión y absorción que produce el objeto en consideración. De aquí se identifican las líneas observadas y si existe una desviación con respecto a las observaciones en los laboratorios terrestres, se atribuye el corrimiento (al rojo o al azul) al movimiento radial del objeto con respecto a nosotros. La velocidad transversal de un objeto $\dot{\theta}$ después de haber sido corregida por un posible paralaje, se denomina movimiento propio. Si por alguna razón este movimiento propio se debe digamos a una expansión uniforme entonces es claro que la velocidad de expansión estará dada por $v_{\rm r}={\rm R}\dot{\theta}$, en donde R es la distancia de la tierra al objeto en cuestión. Este método se utiliza para cúmulos de galaxias y nebulosas planetarias donde se supone que el movimiento es radial a partir de un objeto central.

En estudios de flujos electromagnéticos, y por ende, en astronomía se utiliza el concepto de luminosidad (o potencia) L que es la cantidad de energía radiada por unidad de tiempo que emite un determinado objeto. La luminosidad de un objeto se mide en W o en erg/s. El flujo de energía o simplemente flujo F es la cantidad de energía radiada por unidad de tiempo por unidad de área. Si el objeto en cuestión radia de manera isotrópica es claro que el flujo de radiación electromagnética F observado por un objeto a una distancia R y que emite con una luminosidad L está dado por

$$F = \frac{L}{4\pi R^2}. (6.1)$$

El flujo (o cantidad de radiación observada) es una cantidad que disminuye con la distancia, la luminosidad es una cantidad intrínseca al objeto y representa la potencia con la cual el objeto está emitiendo.

Algunas estrellas de luminosidad variable como las estrellas cefeidas tienen una luminosidad bastante bien definida (y por lo tanto son consideradas como velas estándares en el universo). De tal manera que, como para las cefeidas L es una cantidad conocida, al observar el flujo F en la tierra es posible determinar la distancia a la que estos objetos se encuentran. Estos métodos se utilizaron para encontrar la distancia a ciertas galaxias en el pasado. Hoy en día se utilizan otros métodos más avanzados. Resulta que una clase de explosiones supernova tienen una curva de luz (diagrama L vs tiempo) bastante bien

determinada. Por lo tanto es posible que cuando estas curvas de luz sean identificadas en monitoreos aleatorios a distintas galaxias, una explosión supernova se llevó acabo en la galaxia en observación. A partir de esto se puede inferir de una manera muy precisa la distancia a ciertas galaxias y así entonar los parámetros necesarios para explicar la dinámica del universo. Resulta que, como veremos más adelante, estas observaciones indican que el universo se está expandiendo (acelerando) mas rápido de lo que las teorías estándares pueden explicar. Esta expansión extra se le atribuye a un campo escalar denominado la quintaesencia (por aquello de las cuatro fuerzas fundamentales de la naturaleza según los griegos). Esta fuerza produce una repulsión gravitacional, es decir, funciona como antigravedad[†].

En el siglo II DC, Hiparco clasificó a las estrellas en 6 grupos de magnitud aparente (brillo observado) m. A las mas brillantes las puso en el número 1 de su clasificación y a las menos brillantes en el número 6. En 1856, Pogson definió un sistema de brillos para objetos astronómicos y notó que las estrellas en la clasificación 6 de Hiparco eran más o menos 1/100 veces mas brillantes que una estrella en la clase 1. De aquí se deduce que el ojo humano es un detector de brillo logarítmico. Pogson encontró de manera experimental que

$$m = -2.5 \log F + const, \tag{6.2}$$

donde F es el flujo observado de la estrella con magnitud m. La constante es simplemente una constante de calibración. A manera de ejemplo, consideremos dos estrellas con magnitudes m_1 y m_2 respectivamente. Si además $m_2 = 6$ y $m_1 = 5$ entonces se obtiene que $F_1/F_2 = 1/100$, donde F_1 y F_2 son los flujos de las estrellas con magnitudes m_1 y m_2 respectivamente. Dicho de otro modo, el flujo de radiación de la primer estrella es 100 veces mayor al flujo de la segunda.

La magnitud absoluta M se define como la magnitud aparente que tendría un objeto situado a una distancia de 10 pc. De aquí que

[†]La introducción de la constante cosmológica por Albert Einstein para obtener un universo estático es básicamente lo mismo, una fuerza de antigravedad. Ya describiremos mas adelante todas las posibilidades que puede tener esta constante cosmológica y como se utiliza en cosmología.

$$m - M = 5\log\left(\frac{D}{10\,\mathrm{pc}}\right). \tag{6.3}$$

En el visible, el sol tiene $m_v = -27$ y $M_v = 4.83$. La estrella del amanecer, Sirio tiene $m_v = -1.4$. Lo menos que nuestros ojos alcanzan a ver es hasta $m_v = 6$. Una vela en la superficie de la luna tendría $m_v \approx 25$. Lo más que hemos sido capaces de detectar con nuestros instrumentos astronómicos es $m_v \sim 28-30$.

Existen diversos métodos para medir las masas de objetos gravitacionales, pero el mas sencillo de todos es el que se utiliza para medir la masa de los planetas en el sistema solar o del sol. Consideremos dos partículas de masas m_1 y m_2 que interaccionan gravitacionalmente. El Lagrangiano de este sistema está dado por

$$L = \frac{1}{2} m_1 \dot{\mathbf{r}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{r}}_2^2 + G \frac{m_1 m_2}{|\mathbf{r}_1 - \mathbf{r}_2|}, \tag{6.4}$$

en donde $r_{1,2}$ representan los vectores posición de las partículas 1 y 2 y el punto ($\dot{[}$] \equiv d/dt) representa la derivada con respecto al tiempo t. Si nos montamos en el sistema de referencia del centro de masa del sistema (i.e. $m_1\dot{r}_1 + m_2\dot{r}_2 = 0$) y definimos la posición relativa entre las partículas $r \equiv r_2 - r_1$ entonces el Lagrangiano de la ec.(6.4) toma la forma

$$L = \frac{1}{2}\mu v^2 + G\frac{\mu(m_1 + m_2)}{r}.$$
 (6.5)

Aquí hemos escrito $\dot{\mathbf{r}} \equiv \mathbf{v}$ y $\mu \equiv m_1 m_2/(m_1+m_2)$ es la masa reducida. La ec.(6.5) muestra como el problema de dos cuerpos representado en la ec.(6.4) puede ser reducido al problema de una partícula con velocidad \mathbf{v} y masa μ moviéndose en un campo gravitacional con potencial gravitacional $\phi = -G(m_1+m_2)/r$. El problema de tres o mas cuerpos que interaccionan gravitacionalmente no ha tenido una solución analítica como el problema de dos cuerpos. La forma en la que se resuelven los problemas de varios cuerpos es mediante aproximaciones numéricas.

Utilizando las ecuaciones de Euler-Lagrange $(d(\partial L/\partial v)/dt = \partial L/\partial r)$ se obtiene la ecuación de movimiento

$$\mu a = -G \frac{\mu(m_1 + m_2)}{r^2} e_r, \tag{6.6}$$

donde $\alpha=\dot{v}$ representa la aceleración de la partícula y e_r es un vector unitario en la dirección de r. Si suponemos ahora que la partícula de masa m_1 es mucho mas masiva que la de masa m_2 (como el sol y la tierra), entonces la partícula 1 estará fija y la partícula 2 girará en torno a la primera. Si además consideramos que la órbita de la partícula 2 alrededor de 1 es circular entonces la aceleración es puramente centrípeta, es decir, $\alpha=e_rv^2/r$. Con esto se obtiene que

$$m_1 = \frac{v^2 r}{G}. \tag{6.7}$$

Si se conocen v y r entonces puede determinarse la masa m_1 del objeto central. Este método también se utiliza para sistemas con simetría esférica como lo son los cúmulos globulares, las galaxias elípticas y los cúmulos de galaxias.

Utilizando estimaciones de masa y luminosidad con por ejemplo, los métodos descritos arriba, se define la razón masa-luminosidad M/L. Resulta que este cociente crece (como ha de esperarse) cuando las distancias sobre las cuales se mide la masa y la luminosidad, se aumentan. Sorprendentemente, este cociente crece tanto que excede la masa asociada a la luminosidad estelar observada. Este exceso de materia se denomina materia oscura (materia oscura es cualquier masa que no está asociada a masa estelar, por ejemplo, libros, planetas, enanas cafés, etc.). A la fecha la materia oscura no-bariónica (i.e. no compuesta de materia normal) ha eludido todo tipo de detección. Sin embargo, de manera indirecta, todo parece indicar su existencia sobre todo en galaxias espirales, cúmulos de galaxias y muy probablemente está distribuida de cierta manera a lo largo de todo el universo.

La masa que aparece en la ec.(6.6) puede ser considerada también una función de la distancia al centro de la configuración r si se considera que la distribución de masa solamente depende de la distancia al centro. Esto es fácil de mostrar pues si consideramos que la densidad de masa ρ es únicamente una función de r entonces el potencial gravitacional Newtoniano producido por la masa contenida en un radio r está dado por

$$\Phi = -G \int \frac{dV'\rho(r')}{|r - r'|} = -G \int \frac{\rho(r'_{int})dV'}{|r - r'_{int}|} - G \int \frac{\rho(r'_{ext})dV'}{|r - r'_{ext}|}.$$
 (6.8)

En el último paso de la ec.(6.8) se ha dividido la integral de volumen V en dos integrales. La primera es una integral que se lleva desde el centro de simetría hasta la posición r

(integral dentro de r). La segunda es una integral que se lleva desde la posición r hasta el final de la configuración (que puede ser infinito). Debido a la simetría del problema es suficiente con hacer el cálculo de estas integrales en una dirección particular, digamos en la dirección e_z del eje z. De esta manera, podemos escribir $r = re_z$, con lo cual se obtiene $|re_z - r'e_{r'}| = \sqrt{(r^2 + r'^2 - 2rr'\cos\theta')}$, siendo θ' el ángulo (ángulo polar) que se forma entre los vectores unitarios e_z y $e_{r'}$. Con esto se obtiene que

$$\varphi = -\frac{2\pi G}{r} \int\limits_{0}^{r} \! dr_{\text{e}}' \rho(r_{\text{e}}') \left\{ |r_{\text{e}}' + r| - |r_{\text{e}}' - r| \right\} - \frac{2\pi G}{r} \int\limits_{r}^{R(=\infty?)} \! dr_{\text{i}}' \rho(r_{\text{i}}' \left\{ |r_{\text{i}}' + r| - |r_{\text{i}}' - r| \right\} \label{eq:phi}$$

y como $r_{\text{e}} > r$ y $r_{i} < r$ entonces

$$\phi(r) = -4\pi G \left\{ \frac{1}{r} \int_{0}^{r} dr'_{i} \rho(r'_{i}) r'_{i}^{2} + \int_{r}^{R(=\infty?)} dr'_{e} \rho(r'_{e}) r'_{e}. \right\}$$
(6.9)

Finalmente, utilizando el hecho de que la aceleración gravitacional $g=-\mathbf{grad}\,\varphi$ entonces se obtiene que

$$g = -G\frac{M(r)}{r^2}e_r, \tag{6.10}$$

en donde la masa M(r) encapsulada dentro del radio r está dada por

$$M(r) \equiv 4\pi \int_0^r \rho'(r') dr' = \int \rho'(r') dV'. \tag{6.11}$$

Esta última integral está tomada desde el origen hasta la distancia r. La ec.(6.10) muestra que la fuerza gravitacional que se ejerce sobre una partícula de prueba hasta la el radio r y que es producida por una distribución de masa simétricamente esférica, resulta ser generada únicamente por la masa interior al punto r. De aquí se sigue por ejemplo, que la fuerza gravitacional que la atmósfera terrestre hace en nosotros, al estar parados en la superficie de la tierra, es nula. La ec.(6.10) dice además que la fuerza gravitacional es como

la producida por una masa puntual localizada en el origen de coordenadas y que posee una masa M(r). Este es un resultado importantísimo y se debe a Isaac Newton, quién tardó alrededor de diez años para su demostración.

La distribución mas simple de materia en el universo es aquella que tiende a atraerse, en otras palabras, es inestable y produce un colapso gravitacional. La visible expansión del universo contrarrestar este efecto, sin embargo, regiones localizadas en el universo tienden a formar estructuras colapsadas gravitacionalmente como son las galaxias y las estrellas. Estos objetos estables mantienen su estabilidad a un colapso gravitacional mediante la producción de presión térmica (presión cinética de un gas), presión de radiación (presión producida por fotones), presión degenerada (presión cinética producida como consecuencia del principio de exclusión de Pauli), presiones electromagnéticas (presión producida por campos electromagnéticos) y por rotación (momento angular produce una fuerza centrífuga).

Cuando se tienen electrones con velocidades relativistas, se generan fuentes que radian en diversas bandas del espectro. Estas fuentes involucran a los objetos mas poderosos (i.e. con altas luminosidades), mas compactos (i.e. con altos cocientes luminosidad entre tamaño (L/R)) y las mas variables (pequeñas R para grandes L). En muchas de las ocasiones la fuerte fuerza de gravitación es la responsable de estos fenómenos (pulsares, cuasares, agujeros negros, destellos de rayos- γ , etc.). Todos estos y mas fenómenos serán analizados en detalle a lo largo del curso.

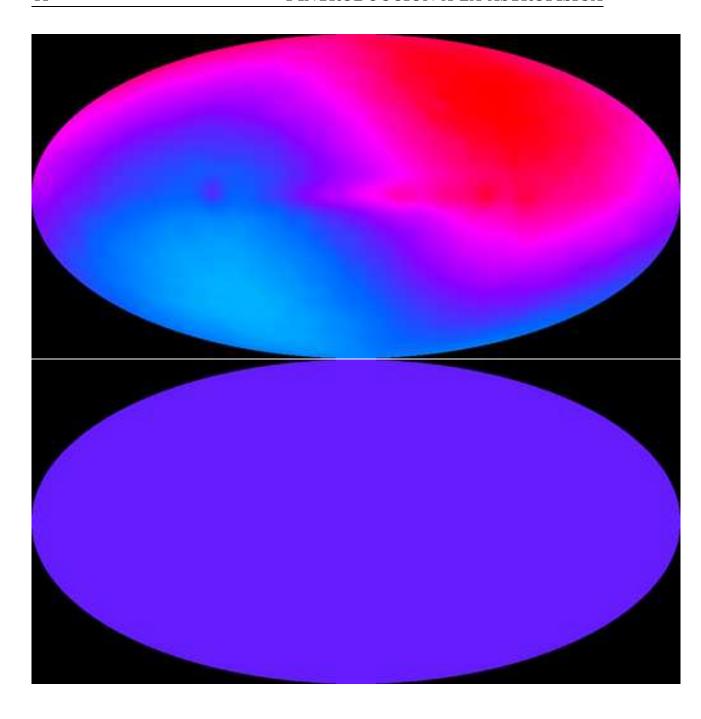


Figura I.11: La figura muestra dos imágenes de la bóveda celeste en una longitud de onda de ~ 5.7 mm tomadas por el satélite COBE. El panel superior muestra dos zonas claras que están producidas por el movimiento de la tierra sobre la radiación cósmica de fondo. Al quitar este efecto de traslación se obtiene una radiación homogénea e isotrópica de ~ 3 K, como lo muestra el panel inferior.

Copyleft ③ Sergio Mendoza < sergio@astroscu.unam.mx>

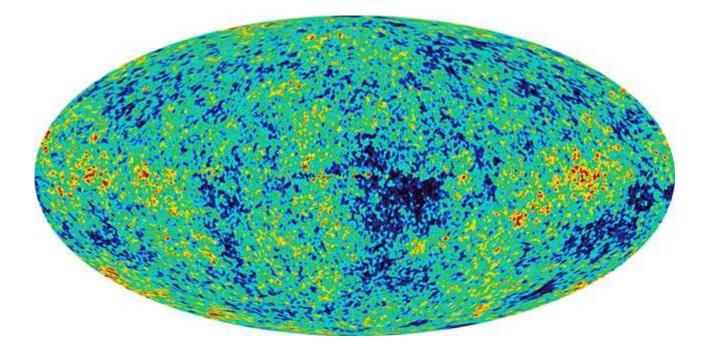


Figura I.12: Al refinar la imagen de la fig.I.11 y observar en ángulos mayores a 10° se observan pequeñas irregularidades en la homogeneidad de la radiación de fondo en microondas. Estas fluctuaciones son las causantes de la formación de la estructura del universo a gran escala hoy en día. La imagen fue tomada con el satélite WMAP.

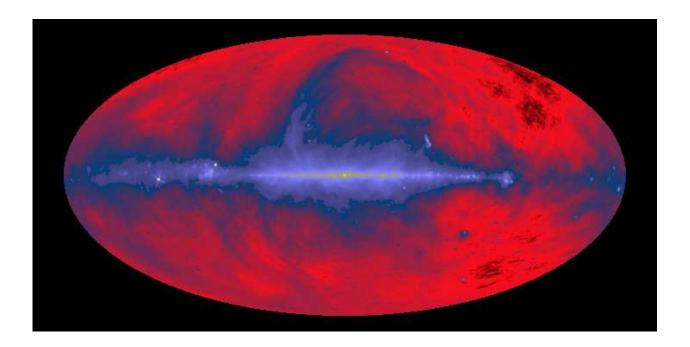


Figura I.13: Mapa del cielo en ondas de radio con frecuencia de 408 MHz (73 cm). La radiación observada es radiación sincrotrónica producida por electrones girando alrededor de campos magnéticos a velocidades ultrarelativistas.

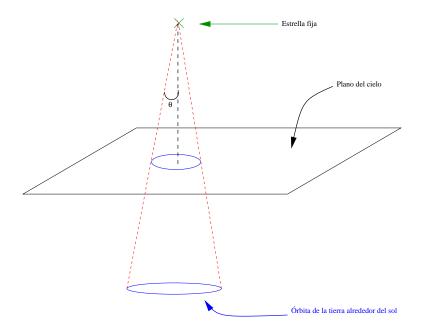


Figura I.14: La figura muestra el paralaje θ que posee una estrella debido al movimiento de la tierra alrededor del sol. Desde la tierra, es la estrella quien parece estar moviéndose en una elipse sobre el plano del cielo.

Capítulo II

Relatividad Especial

§7. Introducción

En mecánica Newtoniana, si se tienen n cuerpos interaccionando gravitacionalmente, el potencial de interacción (potencial gravitacional) solamente depende de las posiciones y no del tiempo. Por lo tanto cuando una de las partículas se mueve, el potencial cambia de manera instantánea. Diversos experimentos en la física muestran que la transmisión de información no es inmediata. El tiempo que tarda esta información en transmitirse es la velocidad de transmisión de información entre la distancia a la cual se encuentra otro objeto. Esta velocidad resulta ser la velocidad de la luz en el vacío. En este capítulo se asume que los lectores saben que es la teoría especial de la relatividad de Einstein, pero mi intención es dar un repaso para ver sus aplicaciones en astrofísica y generalizarlo mas tarde a la teoría de gravitación.

§8. Vectores y tensores en el espacio euclidiano de 3D

Un vector es un conjunto ordenado de tres números los cuales se denominan por $\mathbf{a} = a_{\alpha}e_{\alpha}$. Aquí estamos utilizando la convención introducida por Einstein en la cuál dos subíndices (o superíndices) que aparecen juntos en una operación matemática implica sumatoria. Los índices Latinos h, i, j, etc. toman valores 0,1, 2, 3 y los índices Griegos α , β , γ , etc. toman valores 1, 2, 3. Los vectores e_{α} son vectores unitarios en las direcciones x, y, z, o si se prefiere en las direcciones 1, 2, 3. Así pues el vector $\mathbf{a} = a_1e_1 + a_2e_2 + a_3e_3$.

El producto escalar de dos vectores es evidentemente

$$a \cdot b = a_{\alpha} b_{\beta} e_{\alpha} \cdot e_{\beta}$$

$$= a_{\alpha} b_{\beta} \delta_{\alpha\beta},$$
(8.1)

donde la delta de Kronecker $\delta_{\alpha\beta}$, o el tensor unitario de rango 2 es un objeto de 9 cantidades definidas por $\delta_{\alpha\beta} \equiv 1$ si $\alpha = \beta$ y $\delta_{\alpha\beta} \equiv 0$ si $\alpha \neq \beta$.

El producto vectorial de dos vectores es

$$a \wedge b = a_{\alpha}b_{\beta}e_{\alpha} \wedge e_{\beta}$$

$$= a_{\alpha}b_{\beta}\epsilon_{\alpha\beta\gamma}e_{\gamma},$$
(8.2)

en donde el tensor unitario completamente antisimétrico de rango 3 $\epsilon_{\alpha\beta\gamma}$ o tensor de Levi-Civita, es un objeto de 27 cantidades. Este tensor es tal que sus componentes cambian signo ante cualquier intercambio de cualquier par de índices. Además, las componentes no nulas del mismo son ± 1 . Gracias a su antisimetría las componentes en las cuales aparezcan dos índices repetidos son nulas. En otras palabras, las componentes no nulas son aquellas que poseen todos sus índices diferentes. Es costumbre definir

$$\epsilon_{123} = +1. \tag{8.3}$$

De esta manera los valores de $\epsilon_{\alpha\beta\gamma}$ son +1 o -1 si los números α , β , γ pueden ser llevados al arreglo 1, 2, 3 por un número par o impar de permutaciones respectivamente. Evidentemente el número de todas las posibles permutaciones es 3! En otras palabras

$$\epsilon_{\alpha\beta\gamma}\epsilon_{\alpha\beta\gamma} = 3!$$
 (8.4)

En realidad el tensor $\epsilon_{\alpha\beta\gamma}$ no es un tensor. Es un *pseudotensor* pues sus componentes se comportan como las de un tensor al hacer una rotación del sistema coordenado. Sin embargo al hacer un cambio de signo en una o tres de las coordenadas (una reflexión), algunas de las componentes de este tensor deberían cambiar. No obstante, estas componentes también quedan iguales ya que el tensor se definió como el mismo en todos los sistemas

coordenados. Los pseudotensores de cualquier rango (incluso los de rango 0 que son *pseudoescalares*) se comportan como tensores bajo todas las transformaciones de coordenadas, excepto aquellas que no pueden ser reducidas a rotaciones. Es decir, bajo reflexiones.

Puede mostrarse (te debe de quedar claro esto al ver la parte de tensores y vectores en la sección relativista) que $\epsilon_{\alpha\beta\gamma}\epsilon_{\lambda\mu\nu}$ es un tensor verdadero (es decir, no es pseudotensor) de rango 6. Si se contrae uno o mas índices, entonces se obtiene tensores de rango 4, 2 y 0. Obviamente todos estos tensores tienen la misma forma en cualquier sistema de coordenadas. Debido a esto, y ya que el valor de estos tensores es ± 1 o 0 para cada una de sus componentes, estos mismos deben de poder expresarse como productos de $\delta_{\alpha\beta}$. En otras palabras

$$\varepsilon_{\alpha\beta\gamma}\varepsilon_{\lambda\beta\gamma}=2!\,\delta_{\alpha\lambda},\quad \varepsilon_{\alpha\beta\gamma}\varepsilon_{\lambda\mu\gamma}=1!\,\text{det}\begin{bmatrix}\delta_{\alpha\lambda}&\delta_{\alpha\mu}\\\delta_{\beta\lambda}&\delta_{\beta\mu}\end{bmatrix},\quad \varepsilon_{\alpha\beta\gamma}\varepsilon_{\lambda\mu\nu}=0!\,\text{det}\begin{bmatrix}\delta_{\alpha\lambda}&\delta_{\alpha\mu}&\delta_{\alpha\nu}\\\delta_{\beta\lambda}&\delta_{\beta\mu}&\delta_{\beta\nu}\\\delta_{\gamma\lambda}&\delta_{\gamma\mu}&\delta_{\gamma\nu}\end{bmatrix}.$$

El determinante de un tensor $a_{\alpha\beta}$ de rango 2 es el determinante de la matriz formado por sus componentes. Para escribir este determinante en términos del tensor de Levi-Civita haciendo la siguiente analogía. El producto vectorial de dos vectores puede escribirse como un determinante y como la ec.(8.2). Es claro entonces que el determinante del tensor $a_{\alpha\beta}$ está dado por

$$\det(\alpha_{\alpha\beta}) = \epsilon_{\alpha\beta\gamma}\alpha_{\alpha1}\alpha_{\beta2}\alpha_{\gamma3}. \tag{8.6}$$

Con ayuda de está ecuación, se obtiene la siguiente relación

$$\varepsilon_{\alpha\beta\eta}a_{\alpha\lambda}a_{\beta\mu}a_{\eta\nu} = \det\begin{bmatrix} a_{1\lambda} & a_{1\mu} & a_{1\nu} \\ a_{2\lambda} & a_{2\mu} & a_{2\nu} \\ a_{3\lambda} & a_{3\mu} & a_{3\nu} \end{bmatrix} = \varepsilon_{\lambda\mu\nu}\det(a_{\alpha\beta}).$$
(8.7)

Si ahora multiplicamos a la ec.(8.7) por $\epsilon_{\lambda\mu\nu}$ y utilizamos la ec.(8.4) entonces

$$\epsilon_{\lambda\mu\nu}\epsilon_{\alpha\beta\eta}a_{\alpha\lambda}a_{\beta\mu}a_{\eta\nu} = 3! \det(a_{\alpha\beta}).$$
 (8.8)

Copyleft ③ Sergio Mendoza < sergio@astroscu.unam.mx>

Esta relación muestra otra forma (en vez de la mas informal dada por la ec.(63.3)) de calcular el determinante de un tensor de rango 2.

Es costumbre llamar vector al escalar α_{α} y tensor al escalar $\Pi_{\alpha\beta\gamma\omega}$ ya que, teniendo en mente que los índices griegos varían conforme a lo dicho anteriormente, estos mismos dan razón de ser al vector o al tensor al variar sus índices. Así pues, uno se refiere al *divergente* del vector α como $\partial \alpha_{\alpha}/\partial x_{\alpha}$, al gradiente de la función χ como $\partial \chi/\partial x_{\alpha}$, al rotacional de el vector α como $\varepsilon_{\alpha\beta\gamma}\partial\alpha_{\alpha}/\partial x_{\beta}$, etc.

El teorema de Gauss se puede aplicar a cualquier tensor de rango 1 (un vector), o a cualquier otro tensor de rango mayor

$$\oint \mathsf{F}_{\alpha\beta} \mathsf{d} \alpha_{\alpha} = \int \frac{\partial \mathsf{F}_{\alpha}}{\partial \mathsf{x}_{\alpha}} \mathsf{d} V, \tag{8.9}$$

en donde $F_{\alpha\beta}$ es un tensor de rango 2, $d\alpha_{\alpha}$ es la α -componente del elemento de área cerrada que envuelve al volumen V.

De la misma manera, el teorema de Stokes[†] puede escribirse como

$$\oint F_{\alpha\beta} dl_{\alpha} = \int \frac{\partial F_{\alpha\beta}}{\partial x_{\gamma}} \epsilon_{\alpha\gamma\eta} da_{\eta}$$
(8.10)

donde dl_{α} es un elemento de línea y el área a la cual el elemento da_{α} pertenece es cualquiera que tenga como frontera a la curva por la cual la integral de la derecha es tomada.

Tarea 1

Utilizando notación de Einstein, demuestra las siguientes identidades vectoriales.

(I)
$$\nabla \cdot (\nabla \wedge \mathbf{a}) = 0$$

(II)
$$\nabla \cdot (\mathbf{a} \wedge \mathbf{b}) = \mathbf{b} \cdot (\nabla \wedge \mathbf{a}) - \mathbf{a} \cdot (\nabla \wedge \mathbf{b})$$

(III)
$$\nabla(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot \nabla \mathbf{b} + \mathbf{b} \cdot \nabla \mathbf{a} + \mathbf{a} \wedge \nabla \wedge \mathbf{b} + \mathbf{b} \wedge \nabla \wedge \mathbf{a}$$

[†]El teorema de Stokes es uno de los teoremas centrales de la geometría diferencial. Stokes era Profesor Lucasiano de Matemáticas en el departamento de matemáticas de la Universidad de Cambridge e investigador en el Laboratorio de física (mejor conocido como el Laboratorio Cavendish) de la misma Universidad. El teorema de Stokes apareció por primera vez impreso en uno de los exámenes de matemáticas tomado por Maxwell. Evidentemente, esto fue de gran importancia para el desarrollo de la teoría del electromagnetismo. La demostración explícita mas antigua que se conoce parece ser aquella que en una carta Thomson mandó a Stokes en Julio 2 de 1850.

(IV)
$$\nabla \wedge (\mathbf{a} \wedge \mathbf{b}) = (\mathbf{b} \cdot \nabla)\mathbf{a} + \mathbf{a}\nabla \cdot \mathbf{b} - (\mathbf{a} \cdot \nabla)\mathbf{b} - \mathbf{b}\nabla \cdot \mathbf{a}$$

De esto se sigue que $\nabla \wedge (\nabla \wedge \mathbf{a}) = \nabla(\nabla \cdot \mathbf{a}) - \nabla^2 \mathbf{a}$.
Es curioso notar la similitud de esta relación con la famosa relación vectorial

De hoy en adelante, no hay pretexto para no utilizar la notación de Einstein en todas tus matemáticas. ¡Aprovéchala!

§9. Principio de relatividad

 $a \wedge (b \wedge c) = b(a \cdot c) - c(a \cdot b)$

La descripción de los fenómenos en la naturaleza se lleva a cabo mediante el uso de los llamados Sistemas de Referencia (SR). Un sistema de referencia es un sistema coordenado mediante el cual se miden posiciones en el espacio de la partícula en cuestión. Este sistema posee relojes fijos al mismo para indicar el tiempo. De todos los sistemas de referencia, uno de los utilizados con mas frecuencia es el denominado Sistema de Refencia Inercial (SRI). Un SRI es aquel en el cual un cuerpo que se mueve libremente (es decir, que no hay fuerzas externas que actúen sobre el) se desplaza con velocidad constante. Vulgarmente se dice que un sistema de este tipo es un SR en el cual todos los acelerómetros en cualquier dirección marcan cero.

Si dos sistemas de referencia SRI-1 y SR-2 se mueven con velocidad constante con con respecto a otro y SRI-1 es un SRI, es obvio que SR-2 es un sistema de referencia inercial también. Por lo tanto, existen tantos SRI como se desee y además, todos se mueven con velocidad uniforme entre sí.

Distintos experimentos y observaciones en la naturaleza muestran que el llamado principio [†] de relatividad es valido. Este principio dice que todas las leyes de la naturaleza son idénticas en todos los SRIs. Evidentemente esto implica que todas las ecuaciones de la naturaleza tienen la misma forma en todos los SRIs. Dicho de otra manera, las ecuaciones de la naturaleza son invariantes con respecto a transformaciones de coordenadas y tiempo

[†]Recuerda que en física nuestros axiomas se llaman principios y son los fundamentos básicos de una teoría. De estos mismos pueden deducirse matemáticamente las leyes que se observan en distintos experimentos. Ejemplos de principios son: el principio de relatividad en mecánica, el principio de Pascal en hidrodinámica y el principio de incertidumbre en mecánica cuántica.

de un SRI a otro.

Las interacciones en mecánica clásica se llevan a cabo instantáneamente mediante el uso de un potencial que no depende del tiempo. El ejemplo más clásico de este tipo es la ley de Newton de gravitación universal. Cuando una masa se mueve, instantáneamente la información es transmitida a todo el espacio, modificando el campo gravitacional.

Diversos experimentos en la naturaleza muestran que la transmisión de información no se lleva a cabo de manera instantánea. De hecho esta se realiza de manera finita. El tiempo que toma esta información se denomina como la velocidad de transmisión de información. Evidentemente, esta información debe ser muy rápida de lo contrario lo notaríamos en nuestras actividades cotidianas: empujar una silla, el arrancar de un automóvil, etc. De hecho, esta velocidad debe ser la máxima velocidad de propagación de información. Es obvio que no puede existir movimiento alguno mas rápido que esta velocidad máxima de propagación de información. Si así fuera, imagina a dos autos moviéndose en direcciones opuestas. La señal de que el auto 1 sale en dirección al auto 2 se transmitiría mas lento que la colisión que se llevo entre ambos automóviles. Todos nuestros experimentos muestran que esto no es posible.

En física se denomina señal al acto de mandar información entre dos partículas. De esta manera es apropiado hablar de la velocidad de propagación de señales refiriéndonos a la velocidad de propagación de información.

De el principio de relatividad se sigue que la velocidad de propagación de señales es la misma para todos los SRIs. De ahora en adelante denominaremos esta velocidad por c. Experimentalmente tiene un valor de

$$c \sim 3 \times 10^8 \,\mathrm{m/s}.$$
 (9.1)

Resulta que esta velocidad es la velocidad de propagación de la luz en el vacío. El hecho de que la magnitud de esta velocidad sea grande con respecto a las velocidades a las que estamos acostumbrados, implica que la mecánica clásica es una buena descripción del mundo que nos rodea.

Se denomina principio de relatividad de Einstein al principio de relatividad combinado con el hecho de que la velocidad de propagación de señales —la velocidad de la luz—

es finita[†].

Evidentemente, cuando las velocidades de los cuerpos en cuestión es mucho menor que la velocidad de la luz, puede despreciarse el hecho de que c es finita y ponerla como infinito. Formalmente esto significa que para pasar de mecánica relativista a mecánica Newtoniana basta con hacer tender la velocidad de la luz c a infinito.

§10. Relatividad del tiempo

En la mecánica no-relativista la distancia entre dos *eventos*, (un evento es un conjunto de coordenadas y tiempo utilizado para describir donde y a que hora ocurre cierto fenómeno físico) es relativa. Por ejemplo, imagina dos eventos que ocurren de manera no simultanea en un lugar del espacio o a una distancia fija de cada uno. Estos mismos solo tienen sentido si se especifican con respecto a un sistema de referencia.

A manera de ejemplificar esto, piensa en un guardia que se encuentra en la puerta de el palacio nacional en el zócalo de la Ciudad de México. A las 10:00am el observa un choque entre dos microbúses y como un taxista justamente se salva de la colisión. Más tarde, a las 10:15am el mismo guardia observa como una marcha se acerca hacia las puertas del palacio nacional proveniente de la calle Francisco I. Madero. En este instante, el taxista que libro el choque se encuentra ya en el Ángel de la Independencia en Reforma. Para el guardia presidencial, ambos eventos ocurrieron en un punto fijo desde su origen de coordenadas. Sin embargo, para el taxista con respecto a su origen, la distancia al primer evento fue nula, pero la segunda tiene unos cuantos kilómetros de distancia.

Evidentemente esta relatividad de la distancia en mecánica no-relativista tiene que ser heredada en mecánica relativista.

Cuando hablamos de intervalos de tiempo en mecánica no-relativista, los asumimos siempre como absolutos. En otras palabras, existe un solo tiempo para todos los sistemas de referencia inerciales. Si esto fuera cierto en mecánica relativista, entonces utilizando la ley de adición de velocidades que está basada utilizando el hecho de que el tiempo es absoluto, nos diría que la velocidad de la luz sería diferente en distintos sistemas de referencia inercial. Evidentemente esto está en contradicción con el principio de relatividad

[†]El principio de relatividad de Galileo es el principio de relatividad mas la suposición que la velocidad de la luz es infinita

de Einstein y la prueba experimental de este fenómeno se debe a Michelson en 1881.

De esta manera hemos probado que el principio de relatividad de Einstein implica que el tiempo es relativo. Dicho de otra manera, el tiempo elapsa de manera distinta en distintos sistemas de referencia.

A manera de visualizar este tan drástico cambio, imagina un observador fijo en el andén del metro. Dentro de un vagón del metro casualmente se encuentra un vendedor ambulante justo a la mitad del mismo. El vendedor ofrece lamparas para leer. En un momento dado, este individuo enciende una de sus lámparas para mostrar al público usuario la utilidad de la misma. Los rayos de luz llegan a los extremos del vagón de manera simultanea con respecto a la gente que está dentro del vagón. Sin embargo, para el observador en el andén del metro esta simultaneidad de eventos no es cierta. Esto se debe a que la parte trasera del metro se mueve hacia el haz de luz que sale del objeto y la parte delantera se aleja de esta misma con respecto a la posición del vendedor. Así pues el observador en el andén ve llegar primero la luz a la parte trasera del vagón y luego a la parte delantera.

El principio de relatividad de Einstein cambia de manera drástica nuestra concepción del mundo. Nuestro conocimiento erróneo se debe a que vivimos en un mundo donde las velocidades de movimiento de los distintos objetos que nos rodean es mucho menor que la velocidad de la transmisión de las señales.

Sin embargo, hoy en día la astrofísica nos provee de laboratorios naturales mediante los cuales estos fenómenos pueden ser visibles. A manera de ejemplo, analicemos los llamados movimientos superlumínicos en astrofísica. Estos son movimientos observados en el cielo que parecen ser mas veloces que la velocidad de la luz en el vacío. Imagina una galaxia elíptica cuyo núcleo es capaz de lanzar dos pares de chorros o jets de gas en direcciones antiparalelas. La longitud de estos jets varía dependiendo del objeto que se observe, pero llegan a medir hasta millones de parsecs. Esto es inmenso comparado con el tamaño promedio de una galaxia elíptica que es de unos cuantos kpc. El material (gas) en estos jets se mueve a velocidades cercanas a la velocidad de la luz (~0.99c). A este tipo de objetos se les conoce como radio galaxias o cuasáres y resultan ser los objetos mas energéticos del

[†]Los movimientos superlumínicos en astrofísica fueron matemáticamente establecidos por Martin Rees en el Instituto de Astronomía de la Universidad de Cambridge en los 1960's. Distintas observaciones mas tarde mostraron su veracidad en cuasáres. Estos movimientos fueron observados también en objetos de tamaño galáctico en nuestra galaxia (mini-cuasáres) por Luis Felipe Rodriguez en el Instituto de Astronomía de la Universidad Nacional Autónoma de México y sus colaboradores en la decada de los 1990's.

Universo. Por el momento solamente los llamaremos jets extragalácticos. En ocasiones a través del jet se puede ver que ondas de choque se mueven a lo largo del mismo. En la tierra lo que se observa es el núcleo fijo de la galaxia y una onda de choque que se aleja del núcleo a través del jet. En este modelo, llamado el modelo estándar de dos fuentes para movimientos superlumínicas se observan dos fuentes de radiación: la fuente central (el núcleo activo de la galaxia) y una mancha (la onda de choque). El jet hace un ángulo pequeño θ con respecto a la línea de visión del observador (fig.II.1).

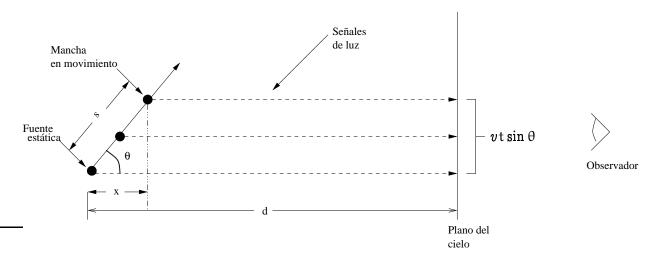


Figura II.1: Representación pictórica del modelo de dos fuentes. El centro de la fuente se encuentra en reposo y la mancha que se expande hace un ángulo θ con respecto a la línea de visión del observador. Las señales de luz son emitidas por la mancha mientras esta se mueve hacia el observador en la tierra.

Existen varias formas de resolver este problema, pero la más bonita es mediante diagramas espacio—tiempo de Minkowski. Como recordarás, estos son diagramas espacio—tiempo en los cuales el eje horizontal representa las posiciones y en el vertical el tiempo multiplicado por la velocidad de la luz c. De esta manera el problema es meramente geométrico. La fig.(II.2) muestra el diagrama espacio—tiempo de esta situación.

Tarea 2

De la fig.II.2 y utilizando la ecuación que describe al segmento AC se obtiene que en la

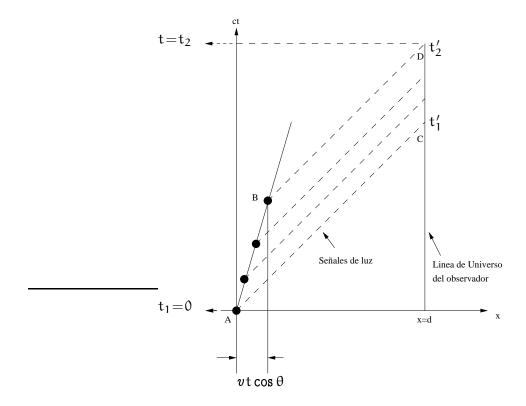


Figura II.2: Diagrama espacio-tiempo de Minkowski de el modelo de dos fuentes para movimientos superlumínicos. La *línea de universo* de la mancha en movimiento es representada por el segmento de línea AB Las señales de luz emitidas por la mancha en el punto A y B son observadas en la tierra en los puntos C y D respectivamente.

línea de universo (i.e. la trayectoria de una partícula dibujada en el espacio-tiempo) del observador (es decir, cuando x=d en el punto C) $t_1'=d/c$.

(1) De la misma figura calcular la ecuación de la línea BD y ver que valor tiene el tiempo t' en la línea de universo del observador.

Por otra parte, si al tiempo $t_1=0$ el núcleo emite radiación, esta misma será observada al tiempo $t_1'=d/c$ por el observador en la tierra. Si s es la distancia que se ha movido la mancha en el tiempo t_1 y v su velocidad, entonces la radiación emitida por la fuente mas tarde en un tiempo $t_2=s/v$ será recibida en la tierra al tiempo $t_2'=t_1'+t_2-x/c$, donde x es la distancia s proyectada a lo largo de la línea de visión del observador. El intervalo de tiempo que toma la mancha en recorrer esta distancia es

§11 INTERVALOS 59

$$\Delta t_{em} = t_2 - t_1 = t_2, \tag{10.1}$$

y el tiempo observado en la tierra es

$$\Delta t_{abs} = t_2' - t_1'. \tag{10.2}$$

(II) Substituye las ecs.(10.1)-(10.2) en la relación que encontraste arriba para t_2' y encuentra la relación entre Δt_{obs} , Δt_{em} , v, y θ .

Los astrónomos definen la velocidad observada v_{obs} como el cociente entre la distancia proyectada en el plano del cielo por la mancha $\Delta t_{em} v \sin \theta$ entre el intervalo de tiempo medido en la tierra que tardó la mancha en cruzar dicha distancia. Substituye esto en la formula previa y encuentra entonces una relación entre v_{obs} , v, y θ .

- (III) Discute como la velocidad observada puede llegar a tener un valor mas alto que la velocidad de la luz en el vacío. ¿Por qué? ¿Donde está el error? ¿Qué debe hacerse para corregir las observaciones?
- (IV) Muestra que la velocidad de expansión aparente $v_{\rm obs}$ tiene un máximo para $\theta = \arccos(v/c)$ con un valor de $v_{\rm obs} = \gamma v$, donde $\gamma = \sqrt{1 (v/c)^2}$ es el Factor de Lorentz. Prueba que para este caso máximo, la velocidad aparente excede a la de la luz cuando la velocidad de la mancha es tal que $v > c/\sqrt{2}$.
- (v) Finalmente muestra para que intervalos de el ángulo θ pueden ser observados movimientos superlumínicos en la tierra y dibuja un diagrama de θ vs v (quizás sea mas conveniente utilizar no directamente θ y v pero sí una función de los mismos...) que muestre pictóricamente este resultado.

§11. Intervalos

Un evento en el espacio-tiempo está representado por las coordenadas (ct, x, y, z) de un espacio de cuatro dimensiones donde t es el tiempo y c la velocidad de la luz. En otras palabras, un evento es un punto en este espacio de cuatro dimensiones que representa el tiempo y el lugar donde ocurrió algo. Este espacio de cuatro dimensiones es ficticio, pero

resultará de gran utilidad en el estudio de la relatividad como pronto te darás cuenta. Los puntos de este espacio o los eventos se denominan puntos de universo. Una línea en este espacio se denomina línea de universo. Por ejemplo, en el espacio-tiempo de Minkowski, un objeto en reposo traza una línea vertical (solamente el tiempo avanza y el objeto no se mueve).

La manera matemática de representar la invariancia de la velocidad de la luz en todos los SRI's es la siguiente. Consideremos dos eventos que ocurren en dos SRI's, K y K'. Supongamos que en el sistema K se envía una señal de luz. Esta señal sale del punto (x_1, y_1, z_1) al tiempo t_1 . A un tiempo posterior t_2 la señal arriba al punto x_2 , y_2 , z_2 . De esta manera, podemos escribir la relación matemática entre ambos eventos

$$c^{2}(t_{2}-t_{1})^{2}-(x_{1}-x_{2})^{2}-(y_{2}-y_{1})^{2}-(z_{2}-z_{1})^{2}=0.$$
(11.1)

Y entonces el signo de la métrica es escogido como: $(+, -, -, -)^{\dagger}$. En el otro sistema de referencia K' la señal de luz sale del punto (x'_1, y'_1, z'_1) al tiempo t'_1 . La señal arriba al punto (x'_2, y'_2, z'_2) cuando el reloj de este punto marca t'_2 . De esta manera, la relación entre los eventos de salida y llegada del haz de luz en el sistema K' están relacionados por

$$c^{2}(t'_{2}-t'_{1})^{2}-(x'_{1}-x'_{2})^{2}-(y'_{2}-y'_{1})^{2}-(z'_{2}-z'_{1})^{2}=0.$$
(11.2)

De las ecs.(11.2)-(11.1) es clara la similitud matemática que existe entre los intervalos de uno y otro sistema de referencia. Escribamos $\Delta t \equiv t_2 - t_1$ y $\Delta l^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$. Se define el *intervalo* Δs como un pedacito de espacio-tiempo

$$(\Delta s)^{2} = c^{2}(\Delta t)^{2} - (\Delta l)^{2}, \tag{11.3}$$

que de forma diferencial se puede escribir como

$$ds^{2} = c^{2}(dt)^{2} - (dx)^{2} - (dy)^{2} - (dz)^{2} = c^{2}(dt)^{2} - (dl)^{2}.$$
 (11.4)

[†]Evidentemente da lo mismo utilizar una notación como: (-, +, +, +). A la fecha, no existe un consenso entre los físicos sobre que signo de la métrica utilizar (¿Habrá que llamar a una reunión de estándares internacionales?). En este curso utilizaremos (+, -, -, -), pero la literatura varía con respecto a esto. Lo que importa es que tu sepas que hay diferencias de notación y que tu escojas una para tu vida y te adhieras a la misma, pero debe de quedarte claro que la física en ambas y todos los resultados son los mismos.

§11 INTERVALOS 61

En el sistema de referencia inercial K', se define de manera análoga ds'. La forma de la ec.(11.4) tiene toda la forma de un elemento de distancia (a pesar de que aparecen unos cuantos signos negativos en la misma). Por esta razón, podemos considerar al intervalo como un pedacito de un espacio de cuatro dimensiones, que se denomina comúnmente como espacio-tiempo. De hecho, la ec.(11.4) muestra matemáticamente que el espacio y el tiempo son una y la misma cosa[†].

Debido a que las cantidades ds y ds' son diferenciales de primer orden, entonces ds = ads', donde a es una función. Esta última función no depende de las coordenadas, ni del tiempo pues esto significaría que diferentes tiempos y diferentes posiciones en el espacio no son equivalentes, en contradicción con la isotropía y homogeneidad del espacio y del tiempo. Tampoco debe depender de la dirección de la velocidad, de lo contrario se viola la isotropía del espacio. Por lo tanto se tiene que ds = a(v)ds'.

Consideremos ahora tres sistemas de referencia inerciales K_1 , K_2 y K_3 . El sistema K_2 se mueve con velocidad v_{12} con respecto al sistema K_1 . El sistema K_3 se mueve con velocidad v_{13} con respecto a K_1 y con velocidad v_{23} con respecto a K_2 . De esta manera se obtiene la relación matemática siguiente entre los sistemas de referencia

$$ds_1 = a(v_{12})ds_2$$
, $ds_1 = a(v_{13})ds_3$, $ds_2 = a(v_{23})ds_3$.

Con esto se obtiene la relación

$$\frac{a(v_{13})}{a(v_{23})} = a(v_{12}). \tag{11.5}$$

Ahora bien, debido a que la velocidad v_{23} es una función que depende no solamente de la magnitud de las velocidades v_{12} y v_{13} , sino que también depende del ángulo entre estas,

[†]Sin embargo, el hecho de que se haya amalgamado el espacio y el tiempo matemáticamente no quiere decir que el espacio y el tiempo sean equivalentes de manera física. De hecho, la marcada diferencia entre el espacio y el tiempo es clara. El espacio es tal que uno tiene libertad de movimiento hacia la derecha o izquierda, arriba o abajo, adelante o atrás. En otras palabras, uno tiene libertad de movimiento en cualquier dirección espacial. En el caso del tiempo no sucede así. La flecha del tiempo solamente apunta hacia una dirección: el futuro (o lo que es lo mismo, hacia donde crece la entropía de un sistema. Como veremos mas adelante, al estudiar agujeros negros, resulta que existen ocasiones en las cuales uno puede moverse en direcciones arbitrarias en el tiempo (hacia el pasado o hacia el futuro) y justo en estos lugares no existe la arbitrariedad de movimiento en el espacio. En otras palabras, resulta que el espacio se comporta en ocasiones como el tiempo y el tiempo como el espacio. Es por esta razón que el espacio y el tiempo son equivalentes, no solamente matemáticamente, sino físicamente hablando.

entonces debido a que este ángulo no aparece en el lado izquierdo de la ec.(11.5) se tiene que necesariamente a(v) es una constante cuyo valor es la unidad de acuerdo a la misma ecuación.

Con esto, hemos mostrado el resultado importante de que los intervalos de y de medidos en dos sistemas de referencia K y K' respectivamente, y que se mueven con una cierta velocidad relativa entre si, satisfacen la relación

$$ds = ds'. (11.6)$$

Dicho de otro modo, el intervalo es un invariante a transformaciones entre sistemas de referencia inerciales: s = s'.

Tomemos ahora dos sistemas de referencia K y K' y consideremos dos eventos en el sistema K, descritos por (ct_1, r_1) y (ct_2, r_2) . En el sistema K' que se mueve con velocidad v con respecto a K estos mismos eventos están descritos por (ct'_1, r'_1) y (ct'_2, r'_2) respectivamente. De esta manera los intervalos entre el evento 1 y el evento 2 en los sistemas K y K' pueden escribirse respectivamente como

$$\Delta s^{2} = c^{2} \Delta t^{2} - \Delta l^{2},$$

$$\Delta s^{\prime 2} = c^{2} \Delta t^{\prime 2} - \Delta l^{\prime 2}$$

y debido a la invariancia del intervalo

$$c^2 \Lambda t^2 - \Lambda 1^2 = c^2 \Lambda t'^2 - \Lambda 1'^2$$

Veamos ahora si existe la posibilidad de encontrar un sistema de referencia K' tal que los dos eventos en K ocurran a distintos tiempos y a una misma posición en K'. En otras palabras, se requiere que $\Delta l' = 0$, por lo tanto

$$\Delta s^{2} = c^{2} \Delta t^{2} - \Delta l^{2} = c^{2} \Delta t^{\prime 2} > 0.$$
 (11.7)

De tal forma que un sistema de referencia con esta propiedad cumple con el hecho de que el intervalo es un número real. Los intervalos reales se denominan *como-tiempo*. Dos eventos

§11 INTERVALOS 63

que ocurren en un mismo cuerpo son siempre como-tiempo debido a que la distancia que se mueve el objeto entre el primer y segundo evento no puede ser mayor a $c\Delta t$ y por lo tanto $\Delta l < c\Delta t$.

Busquemos ahora un sistema de referencia K' de tal forma que los eventos 1 y 2 que ocurren en K sean tales que ocurran a diferentes distancias, pero al mismo tiempo en K'. En otras palabras, busquemos K' tal que $\Delta t' = 0$, con lo cual

$$\Delta s^{2} = c^{2} \Delta t^{2} - \Delta l^{2} = \Delta l^{2} < 0.$$
 (11.8)

En este caso, un sistema de referencia con esta propiedad tiene la propiedad de que el intervalo es un número imaginario. Los intervalos imaginarios se denominan $como-espacio^{\dagger}$.

La división del espacio-tiempo en intervalos como-tiempo y como-espacio es muy importante en la física, sobre todo porque esta propiedad es un invariante relativista (es decir, preserva su característica en distintos SR). Por ejemplo, un intervalo que es como-tiempo en un SRI, será como-tiempo en otro SRI. Además en los intervalos como-tiempo dos eventos que ocurrieron uno después del otro son causales. Es decir, no existe un sistema de referencia en el cual el primer evento ocurra después que el segundo. Por esta razón es posible definir el pasado absoluto y el futuro absoluto de un evento como-tiempo. La fig.II.3 muestra esta situación para un evento en el origen. Las líneas a 45° representan líneas de universo de fotones. Dibujado en sus cuatro dimensiones, estas líneas se convierten en un cono, denominado frecuentemente como el cono de luz. Dentro de este cono, todos los eventos son como-tiempo y se refieren a movimientos por debajo de la velocidad de la luz (movimientos permitidos). Fuera del mismo, los eventos son como-espacio y corresponden a movimientos de partículas que viajan mas rápido que la luz (estos movimientos no tienen sentido físicamente hablando y por lo tanto esta zona es una zona no permitida). Todos los eventos que se encuentran por arriba del origen corresponden al futuro absoluto del evento en el origen y los debajo del origen son su pasado absoluto. Nota que la causalidad es posible de violar si un intervalo es como-espacio.

[†]Nota que si la métrica hubiese sido escogida como (-,+,+,+) entonces los intervalos como-espacio serían reales y los como-tiempo serían imaginarios.

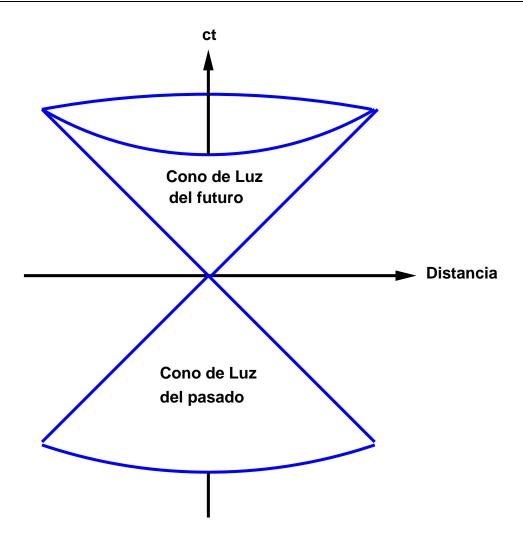


Figura II.3: Un evento (el origen) en el diagrama de Minkowski es atravesado por las líneas de universo de la luz. Estas líneas forman un cono cuando se toman las 4 dimensiones (un cono en 4 dimensiones). Los eventos dentro del cono de luz son como—tiempo (eventos físicamente permitidos) y los de fuera del cono son eventos como—espacio (eventos físicamente prohibidos).

§12. Tiempo propio

Consideremos un sistema de referencia inercial K, en el cual se instalan relojes sincronizados[†]. Un reloj que se encuentra en otro sistema de referencia K' se mueve con

[†]Aunque ya te debe haber quedado claro, mas vale dejarlo dicho. La manera de sincronizar relojes en un SRI es la siguiente. Instalemos relojes en todos los puntos del SRI. Escojamos un reloj base, digamos un

velocidad v con respecto al sistema K. En el sistema K se mide un infinitesimal de tiempo dt en el cual el reloj en movimiento avanza una distancia d $l = \sqrt{(dx^2 + dy^2 + dz^2)}$. El intervalo de tiempo dt' que marca el reloj en movimiento corresponde es tal que dl' = 0. Con esto y utilizando el hecho de que el intervalo es un invariante relativista, entonces

$$ds^2 = c^2 dt^2 - dl^2 = ds'^2 = c^2 dt'^2$$
.

De aquí que

$$dt' = dt \sqrt{1 - \frac{dl^2}{c^2 dt^2}}.$$

Pero como $dl^2/dt^2 = v^2$ entonces

$$d\tau \equiv dt' = ds/c = dt\sqrt{1 - v^2/c^2}.$$
 (12.1)

Integrando esta ecuación se obtiene la relación que existe entre la diferencia de tiempos $(t_2 - t_1)$ medidos en K y la diferencia de tiempos $(t'_2 - t'_1)$ correspondientes en K'

$$\tau_2 - \tau_1 = t_2' - t_1' = \int_{t_1}^{t_2} dt \sqrt{1 - v^2/c^2}.$$
 (12.2)

El tiempo $\Delta \tau = \tau_2 - \tau_1$ medido por un reloj en movimiento con respecto a varios relojes en reposo en un SRI se denomina tiempo propio. Es claro de la ec.(12.2) que el tiempo propio es menor al tiempo correspondiente observado en el sistema K. Dicho de otro modo, un reloj en movimiento camina mas lento que varios relojes en reposo que se encuentran en un SRI.

Es claro que la situación vista desde el sistema de referencia K' no es la misma. Para esto, montémonos en el sistema de referencia K', donde únicamente se encuentra un reloj, el

reloj que se encuentra en el origen de coordenadas. Cuando el reloj marque las 0hrs (por ejemplo), un haz de luz es disparado en todas las direcciones del espacio. A la distancia r del origen de coordinadas, justo cuando llega la señal de luz, todos los relojes deben marcar las 0hrs también. Haciendo esto para todos los relojes que se encuentran en cada punto del espacio se logra sincronizar a todos los relojes en un SRI.

cual está siendo comparado con diferentes relojes colocados en K'. Es claro que la situación no es simétrica y por lo tanto un observador en K' no vería que los relojes en K caminan mas lento. Por ejemplo, supongamos que el metro de la ciudad de México viaja a una velocidad constante de 0.5c entre la estación Universidad y la estación Indios Verdes. Consideremos que los relojes en los andenes de estas estaciones han sido sincronizados. Un pasajero sincroniza su reloj en la estación Universidad antes de subirse al metro. Al llegar a la estación Indios Verdes el pasajero notará que en efecto, su reloj se encuentra atrasado con respecto al reloj de la estación Indios verdes.

El problema llega justamente cuando la comparación de los relojes se hace con un mismo reloj. Por ejemplo, si el reloj en movimiento realiza una trayectoria cerrada, entonces la comparación sería entre dos relojes solamente (es como ir en la línea 3 del metro, saliendo de Universidad, llegar a Indios Verdes y regresar a Universidad). En este caso, la comparación se realiza entre dos relojes únicamente: el reloj en movimiento y un solo reloj en K. En otras palabras, podría creerse que el reloj en movimiento caminó mas lento que el que está en reposo sobre K. Pero desde el punto de vista del sistema K' es el reloj en K quien se mueve y por lo tanto podría decirse que el reloj en K caminó mas lento que el de K'. Sin embargo, resulta que el movimiento en una trayectoria cerrada no se lleva acabo en un SRI. Movimiento curvilíneo implica que el SR es no-inercial. Como veremos mas adelante, en la parte de relatividad general, los relojes que se encuentran en sistemas de referencia noinerciales caminan mas lento al compararlos con relojes fijos en un SRI. De esta manera por ejemplo, si se encuentran dos gemelos en la tierra y uno de ellos hace un viaje a velocidades cercanas a las de la luz para visitar la estrella mas cercana (Alfa Centauri), cuando regrese a la tierra, esta persona se verá mas joven que su hermano gemelo. La contradicción aparente que surge de este problema fue muy famosa en la historia de la física y se le conoce como la paradoja de los gemelos.

De la ec.(12.1) se sigue que de manera general, el intervalo de tiempo medido por un reloj en movimiento y tomado entre dos puntos a y b del cuatro-espacio (es decir, a lo largo de la línea de universo del reloj en movimiento) está dado por

$$\frac{1}{c} \int_{c}^{b} ds. \tag{12.3}$$

Si el reloj está en reposo, entonces la línea de universo es una línea paralela al eje t. Si el

reloj está en movimiento, entonces esta línea de universo es una curva con extremos a y b. Además como vimos, el intervalo de tiempo leído por un reloj en reposo es mayor que el intervalo de tiempo de un reloj en movimiento. En otras palabras, la integral ec.(12.3) posee un valor máximo si se toma a lo largo de una trayectoria donde el reloj está en reposo (una línea paralela al eje t con puntos inicial a y final b). Cualquier otra trayectoria que tenga como punto inicial a y final b resultará en un valor inferior para la integral[†]. Evidentemente esto no es así en el espacio Euclidiano de tres dimensiones. De hecho, una trayectoria rectilínea corresponde a un mínimo (recuerda que la distancia entre dos puntos a y b se define como el mínimo de todas las posibles trayectorias para conectar a a y b). El carácter de máximo para el cuatro-espacio de Minkowski es debido a que el intervalo tiene signos positivos y negativos en vez de positivos como sucede en el caso Euclidiano.

§13. Transformación de Lorentz

En mecánica no-relativista, la fórmula de transformación de un SRI a otro SRI se efectúa mediante la transformación de Galileo. Si el origen del tiempo se escoge justo cuando los orígenes de ambos SRI, K y K' coinciden, esta transformación está dada por

$$\mathbf{r} = \mathbf{r}' + v\mathbf{t}, \qquad \mathbf{t} = \mathbf{t}' \tag{13.1}$$

donde t es el tiempo, r el vector posición y v la velocidad del sistema K' con respecto al sistema K. Las cantidades no primadas y las primadas se refieren a los sistemas de referencia K y K' respectivamente. Esta transformación no sirve en mecánica relativista pues no deja invariante al intervalo.

Busquemos entonces una transformación de tal manera que el intervalo sea una cantidad invariante. Como ds puede verse como la distancia entre dos eventos en el el cuatroespacio, entonces sabemos que las transformaciones que dejan invariante a la distancia son

[†]En ocasiones es bueno matar moscas con bombas nucleares, así es que hagamos la demostración de esto matemáticamente. La integral de la ec.(12.3) puede escribirse como $\int_a^b L dt$ donde la función $L \equiv (1/c) \, ds/dt = (1/c) \, \left(c^2 dt^2 - dl^2\right)^{1/2} / dt = c \left(1 - v^2/c^2\right)^{1/2}$ representa el Lagrangiano. Utilizando las ecuaciones de Euler-Lagrange $\left((d/dt)(\partial L/\partial v) = \partial L/\partial t\right)$ se obtiene que los extremos del funcional L corresponden a v = c o v = 0. Claramente, el caso en el que la velocidad es igual a la velocidad de la luz corresponde a un mínimo, pues en ese caso $\int_a^b ds = 0$. El máximo v = 0 corresponde a una línea paralela al eje t.

traslaciones y rotaciones. Sin embargo, las traslaciones no son de interés pues corresponden precisamente a un reescalamiento de el origen de coordenadas y de tiempo. Busquemos entonces una rotación en este espacio de cuatro dimensiones. Por un momento (y solamente en esta ocasión) escribamos al intervalo como $ds^2 = c^2dt + d\lambda^2$ en donde hemos escrito $\lambda^2 = -l^2$. De esta manera, el espacio de Minkowski "puede" verse como un espacio euclidiano. Las rotaciones base que pueden hacerse en un espacio de cuatro dimensiones son rotaciones en los planos xy, zy, xz, tx, ty y tz. Cualquier otra rotación puede descomponerse en composiciones de estas seis. Las primeras tres rotaciones corresponden a rotaciones puramente espaciales y no son de interés para nosotros (pues no habría transformación del tiempo).

Por simplicidad, supongamos que el sistema K' se está moviendo sobre el eje 0x con una velocidad v con respecto a K. De esta manera, la transformación que estamos buscando debe ser una rotación que involucra al tiempo t y a la coordenada x en ambos sistemas de referencia (rotación en el plano xy). Por lo tanto, para transformar del sistema K al sistema K' se tiene que efectuar la siguiente operación (rotación) entre las coordenadas ct y x = ix (con $i^2 = -1$)

$$\begin{pmatrix} \mathsf{ct} \\ \chi \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \mathsf{ct}' \\ \chi' \end{pmatrix},$$

en donde α es el ángulo de rotación. Escribiendo $\chi=\mathrm{i} x$ y $\chi'=\mathrm{i} x'$ se obtiene que

$$\begin{pmatrix} ct \\ x \end{pmatrix} = \begin{pmatrix} \cosh \Psi & \sinh \Psi \\ \sinh \Psi & \cosh \Psi \end{pmatrix} \begin{pmatrix} ct' \\ x' \end{pmatrix}, \tag{13.2}$$

en donde $\Psi=i\alpha$. La transformación de la ec.(13.2) es la transformación buscada. Representa la "rotación" en el plano xy del espacio pseudo Euclidiano de cuatro dimensiones de Minkowski. Como el origen del sistema K' se mueve con velocidad v con respecto a K, entonces sustituyendo x'=0, la ec.(13.2) implica que $x=ct'\sinh\Psi$ y $ct=ct'\cosh\Psi$. Dividiendo estas ecuaciones y utilizando el hecho de que v=x/t se obtiene entonces que $\tanh\Psi=v/c$. De aquí se sigue que $\sinh\Psi=\gamma v/c$ y $\cosh\Psi=\gamma$, en donde el factor de Lorentz γ está definido por

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}. (13.3)$$

Sustituyendo estos resultados en la ec.(13.2) se obtiene la transformación buscada, conocida como la transformación de Lorentz

$$x = \gamma(x' + vt'),$$
 $y = y',$ $z = z',$ $t = \gamma(t' + vx'/c^2).$ (13.4)

La transformación inversa, en la cual se expresa x', y', z', t' como función de x, y, z, t se encuentra fácilmente cambiando v por -v debido a que el sistema K se mueve con velocidad -v con respecto a K'. Nota que en el límite cuando $c \to \infty$ las transformaciones de Lorentz se convierten en las transformaciones de Galileo. En el caso en que v > c las coordenadas x y t son imaginarias. Esto expresa matemáticamente la imposibilidad de movimiento a velocidades mayores que las de la luz. Además cuando v = c las transformaciones quedan indeterminadas.

Las transformaciones de Galileo cumplen con la propiedad de conmutatividad. En otras palabras, el resultado de aplicar primero una transformación de Galileo y luego otra no depende del orden en el que se apliquen estas transformaciones. Esto no ocurre en el caso de las transformaciones de Lorentz. Esto se sigue del hecho de que la transformación de Lorentz constituye una rotación en el cuatro-espacio. En efecto, el resultado de aplicar dos rotaciones alrededor de ejes distintos depende del orden en el que se apliquen estas rotaciones. Únicamente cuando las rotaciones se efectúen sobre el mismo eje, entonces existe conmutatividad. Dicho de otro modo, solamente cuando los vectores velocidad v_1 y v_2 de las transformaciones sean paralelos entre si, existe la posibilidad de conmutación.

Consideremos ahora un reloj en reposo en el sistema K'. Tomemos dos eventos que ocurren en el mismo lugar en este sistema. La diferencia de tiempos entre estos eventos está dada por $\Delta t' = t_2' - t_1'$. Busquemos ahora el correspondiente tiempo Δt que se observa en el sistema K. Utilizando las transformaciones de Lorentz, ec.(13.4), se obtiene que $t_{1,2} = \gamma(t_{1,2}' + vx'/c^2)$. De tal forma que

$$\Delta t = t_2 - t_1 = \gamma \Delta t'$$

tal como se había mostrado en la ec.(12.2): el reloj en movimiento camina mas lento con

respecto a los relojes instalados en el sistema en reposo. Este resultado es muy importante y tiene nombre: la dilación del tiempo.

Consideremos ahora que se quiere realizar la medición de una longitud de una varilla paralela al eje 0x del sistema K. Si las puntas de la varilla corresponden a posiciones x_1 y x_2 entonces la longitud de la misma en el sistema K está dada por $\Delta x = x_2 - x_1$. Determinemos ahora las coordenadas x_1' y x_2' de las puntas de la varilla en el sistema K' para un mismo tiempo t'. Utilizando las transformaciones de Lorentz se obtiene que $x_{1,2} = \gamma(x_{1,2}' + vt')$. De esta manera la longitud de la varilla $\Delta x' = x_2' - x_1'$ en el sistema K' satisface que $\Delta x = \gamma \Delta x'$. Para una varilla, se define la longitud propia † l_0 como la longitud de la varilla medida en un sistema de referencia en reposo. De esta manera, como $l_0 = \Delta x$ y definiendo $l = \Delta x'$. Con esto se obtiene que

$$l_0 = \gamma l. \tag{13.5}$$

Es decir, una varilla alcanza su máxima longitud cuando se mide en el sistema propio. Este resultado se conoce como la contracción de Lorentz. Como las direcciones ortogonales a la dirección del movimiento son invariantes de Lorentz, entonces el volumen V de un objeto se transforma mediante la siguiente fórmula

$$V_0 = \gamma V, \tag{13.6}$$

en donde V_0 representa el volumen propio del objeto en consideración.

Busquemos ahora formulas que relacionen la velocidad de una partícula de un SRI a otro. Para esto, consideremos como antes que la velocidad del sistema K' con respecto a K es paralela al eje 0x y que tiene un valor de ω . Supongamos que $v = v_{\alpha}e_{\alpha}$ es la velocidad de una partícula en el sistema de referencia K y que $v' = v'_{\zeta}e'_{\zeta}$ es el valor de esta velocidad desde el sistema de referencia K'. Diferenciando las transformaciones de Lorentz, ec.(13.4), se obtiene que

$$dx = \gamma(\omega) \left(dx' + v dt' \right), \qquad dy = dy', \qquad dz = dz', \qquad dt = \gamma(\omega) \left(dt' + v dx'/c^2 \right),$$

[†]En relatividad se utiliza el término propio cuando el valor de cualquier cantidad física está referido al lugar en el cual dicha cantidad se encuentra en reposo.

donde $\gamma^2(w)=1/(1-\omega^2/c^2)$. Dividiendo las primeras tres igualdades por la última y utilizando el hecho de que $v_{\alpha}=\mathrm{d}x_{\alpha}/\mathrm{d}t$ y $v_{\alpha}'=\mathrm{d}x_{\alpha}'/\mathrm{d}t'$ se obtiene entonces las fórmulas para la transformación de las velocidades

$$v_{x} = \frac{v'_{x} + \omega}{1 + v'_{x}\omega/c^{2}}, \qquad v_{y} = \frac{v'_{y}\gamma(\omega)}{1 + v'_{x}\omega/c^{2}}, \qquad v_{z} = \frac{v'_{z}\gamma(\omega)}{1 + v'_{x}\omega/c^{2}}.$$
 (13.7)

Cuando c $\to \infty$ la ec.(13.7) tiende a $v_x = v_x' + \omega$, $v_{y,z} = v_{y,z}'$ y t = t', que corresponde a la ley de adición de velocidades en mecánica no-relativista. Es claro de las ecs.(13.7) que la suma de dos velocidades nunca excede la velocidad de la luz. El hecho de que en las fórmulas de adición de velocidades, las dos velocidades v_α y ω entren de manera no simétrica se debe a la no conmutatividad de las transformaciones de Lorentz.

Consideremos ahora una partícula que se mueve en un plano (de hecho esto se puede escoger para cualquier trayectoria, siempre y cuando se considere un intervalo de tiempo suficientemente pequeño), el plano 0xy en el sistema de referencia K. En coordenadas polares, la velocidad en este sistema de referencia está dada por $v = v\cos\theta\,e_r + v\sin\theta\,e_\theta$ en donde r y θ representan la distancia al origen y el ángulo polar respectivamente. En el sistema K' que se mueve con velocidad ω (sobre el eje 0x con respecto a K, la velocidad de la partícula se puede escribir como $v' = v'\cos\theta'\,e_{r'} + v'\sin\theta'\,e_{\theta'}$. De esta manera, utilizando la ec.(13.7) se obtiene la relación entre la dirección de la velocidad de un sistema de referencia a otro

$$\tan \theta = \frac{v' \gamma^{-1}(\omega) \sin \theta'}{v' \cos \theta' + \omega}.$$
 (13.8)

Para el caso de un haz de luz, se tiene que v=v'=c. En este caso se obtiene el fenómeno de aberración de la luz que consiste en la desviación que se produce en un haz de luz por pasar de un SRI a otro[†]

$$\tan \theta = \frac{\gamma^{-1}(\omega)\sin \theta'}{\omega/c + \cos \theta'}.$$
 (13.9)

[†]Es curioso que George Lucas haya utilizado este hecho en su serie de películas La guerra de las galaxias. Por ejemplo cuando el Halcón Milenario (el sistema de referencia K) viaja a velocidades relativistas, se observa lo siguiente desde la ventana del mismo. Para esta nave, son las estrellas quienes se mueven a velocidades relativistas. Los rayos de luz provenientes de las estrellas entonces se observan a un ángulo $\theta \ll 1$ como lo muestra la eq.(13.8). Por esto en la ventana de la nave se ve que los rayos de luz provenientes de las estrellas se colapsan en un punto justo en el centro de la nave.

De la ec.(13.9) se sigue que $\sin\theta = \gamma^{-1}(\omega)\sin\theta'/(1+\omega\cos\theta'/c)$ y que $\cos\theta = (\cos\theta'+\omega/c)/(1+\omega\cos\theta'/c)$ De esta manera para el caso en que $\omega \ll c$ se obtiene a primer orden en ω/c

$$\Delta\theta \equiv \theta' - \theta \approx \sin\theta - \sin\theta' = -\frac{\omega}{c}\sin\theta'\cos\theta' \approx \frac{\omega}{c}\sin\theta'. \tag{13.10}$$

El ángulo $\Delta\theta$ es el ángulo de aberración y la ec.(13.10) es la famosa fórmula para la aberración de la luz en la óptica geométrica.

§14. Cuatro-vectores

Un evento puede describirse por el conjunto de coordenadas (ct, x, y, z). Esto puede verse como las componentes de un vector (radiovector) en un espacio de cuatro dimensiones. Sus componentes las denotamos por x^i y como mencionamos en §8 los índices latinos toman valores 0, 1, 2, 3. La selección la haremos aquí de la siguiente manera

$$x^0 = ct$$
, $x^1 = x$, $x^2 = y$, $x^3 = z$. (14.1)

Definimos la "longitud" de este radio vector como

$$(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 (14.2)$$

Evidentemente esta longitud no cambia con respecto a rotaciones del espacio cuatrodimensional, particularmente las transformaciones de Lorentz.

De manera general, un conjunto de cuatro cantidades A^i que se transforman como las componentes del radio vector \mathbf{x}^i bajo transformaciones del espacio cuatro-dimensional se llama un $cuatro-vector^{\dagger}$. En otras palabras, bajo las transformaciones de Lorentz las componentes de este cuatro-vector se transforman como

$$A^{0} = \frac{A'^{0} + A'^{1}w/c}{\sqrt{1 - w^{2}/c^{2}}}, \qquad A^{1} = \frac{A'^{1} + A'^{0}w/c}{\sqrt{1 - w^{2}/c^{2}}}, \qquad A^{2} = A'^{2} \qquad A^{3} = A'^{3}.$$
 (14.3)

[†]Esto no es de sorprenderse, pues como ya sabías un vector en el espacio Euclidiano de 3D es un conjunto de tres coordenadas que al hacer una rotación alrededor de alguno de los ejes coordenados, sus componentes se transforman de acuerdo a la fórmula de rotaciones.

El cuadrado de la magnitud de cualquier cuatro-vector Ai se define como

$$(A'^{0})^{2} - (A'^{1})^{2} - (A'^{2})^{2} - (A'^{3})^{2}.$$
(14.4)

Por conveniencia, introduzcamos ahora dos tipos de componentes para los cuatrovectores, denotándolos por A^i y A_i . Estas componentes las definimos relacionadas unas a otras por

$$A^0 = A_0, \qquad A^{\alpha} = -A_{\alpha}. \tag{14.5}$$

Los cuatro-vectores A^i se llaman contravariantes y los A_i covariantes. Utilizando las ecs.(14.4)-(14.5) esto implica que el cuadrado de un cuatro-vector puede escribirse como A^iA_i , en donde la convención de suma explicita de Einstein ha sido utilizada. La regla mas importante a recordar con respecto a esta convención es que de los pares de índices que se estén sumando, uno debe ser superíndices y el otro subíndice y como siempre, no deben existir nunca mas de dos índices repetidos en una ecuación matemática.

En completa analogía con la definición del cuadrado de la magnitud de un cuatrovector, podemos definir el *producto escalar* de dos vectores como

$$a_i b^i = a_0 b^0 + a_1 b^1 + a_2 b^2 + a_3 b^3.$$
 (14.6)

Es evidente que $a_i b^i = a^i b_i$. En otras palabras, uno puede intercambiar los índices superiores e inferiores siempre que estén repetidos.

De la ec.(14.3) y la ec.(14.5) se sigue que

$$A_0 = \frac{A_0' - A_1' w/c}{\sqrt{1 - w^2/c^2}}, \qquad A_1 = \frac{A_1' - A_0' w/c}{\sqrt{1 - w^2/c^2}}, \qquad A_2 = A_2', \qquad A_3 = A_3'.$$
 (14.7)

De aquí uno puede mostrar que el producto escalar A^iB_i es un cuatro-escalar (invariante bajo rotaciones en el espacio cuatro-dimensional). Sin embargo, esto está de mas, ya que este resultado es obvio si se ve la similitud entre el producto escalar entre dos vectores diferentes y el cuadrado A_kA^k .

Como es costumbre, la componente A^O de un cuatro-vector se llama la componente

temporal (de tiempo) y a cada una de las componentes A^{α} se les denomina componentes espaciales. El cuadrado de un cuatro-vector puede ser positivo, negativo o cero. Un cuatro-vector se denomina como tiempo, como espacio o nulo si su cuadrado es positivo, negativo o cero respectivamente (tal cual como se hace con el intervalo ds). Bajo rotaciones espaciales, las componentes A^{α} de un cuatro-vector se comportan como un tres-vector A. La componente temporal de un cuatro-vector es un tres-escalar con respecto a estas transformaciones. Es por esta razón que frecuentemente uno escribe las componentes de un vector como $A^{i} = (A^{0}, A)$. Las componentes covariantes de este mismo vector son evidentemente: $A_{i} = (A_{0}, -A)$ y el cuadrado de el mismo cuatro vector es $(A^{0})^{2} - A^{2}$. Las propiedades de los vectores en un espacio Euclidiano ya han sido discutidas anteriormente en §8 y como vimos, no hay necesidad de hacer diferencia entre covariante y contravariante en este caso.

Un tensor cuatro-dimensional de rango 2 es un conjunto de 16 cantidades A^{ik} que bajo transformaciones de coordenadas, se comporta como las transformaciones del producto de dos vectores (por ejemplo, el producto a^ib^k). De la misma manera, esta definición puede ser generalizada para tensores de rango mayor.

Las componentes de un tensor de rango 2 se pueden escribir de forma contravariante A^{ik} , covariante A_{ik} y mixtas satisfacen $A^i{}_k$, $A_i{}^k$ y $A^i{}_k$. En este último caso es importante hacer la diferencia entre los distintos índices superiores e inferiores. De hecho, la última notación $A^i{}_k$ es utilizada únicamente cuando no hay confusión alguna y esto ocurre cuando las componentes mixtas $A^i{}_k = A_i{}^k$, es decir cuando el tensor es sim'etrico: $A^{ik} = A_{ik}$. Se dice que un tensor es antisim'etrico cuando $A^{ik} = -A_{ik}$, lo cual implica que las componentes con ambos índices iguales son nulas.

De la misma manera que para cuatro-vectores, toda ecuación que contenga tensores, debe tener índices libres idénticos arriba y abajo. Estos mismos pueden moverse libremente hacia arriba o hacia abajo, siempre y cuando se haga lo mismo de ambos lados de la igualdad. Si por alguna razón llegas a ver que estas igualando componentes covariantes con contravariantes en una ecuación, algo está severamente mal.

La contracción de un tensor A^{i}_{i} es llamada traza del tensor. Evidentemente, el producto escalar de dos cuatro-vectores es una contracción pues el escalar $A_{i}B^{i}$ es formado al contraer el cuatro-tensor $A_{i}B^{k}$.

El tensor unitario δ_k^i es tal que para cualquier cuatro-vector $\delta_k^i A^k = A^i$. Esto implica que sus componentes son tales que $\delta_k^i = 1$ sí i = k y $\delta_k^i = 0$ sí $i \neq k$.

Subiendo o bajando los índices del tensor unitario δ_k^i uno puede obtener el tensor simétrico g^{ik} o g_{ik} llamado el tensor métrico. Es fácil ver que

$$g^{ik} = g_{ik} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \equiv \operatorname{diag}(1, -1, -1, -1). \tag{14.8}$$

De aquí se sigue la fórmula para subir y bajar índices

$$g_{ik}A^{k} = A_{i}, g^{ik}A_{k} = A^{k}.$$
 (14.9)

De aquí que por ejemplo el intervalo pueda escribirse como[†]

$$ds^2 = g_{ik}dx^i dx^k. (14.10)$$

Una de las propiedades que hace especiales a los tensores δ_k^i , g^{ik} , yg_{ik} es que son los mismos en cualquier sistema de coordenadas (pues así fueron escogidos). Otro tensor que cumple con este hecho es el tensor unitario completamente antisimétrico (tensor de Levi-Civita) ϵ^{iklm} . Al igual que su contraparte en tres dimensiones, este tensor es tal que cambia de signo ante el intercambio de cualquiera de sus índices. De la antisimetría se sigue que todas las componentes en las cuales dos índices son repetidos, vale cero. Así pues, las únicas componentes no nulas son aquellas en las cuales todos los índices son diferentes. Es costumbre definir

$$e^{0123} = +1.$$
 (14.11)

De esta manera, las componentes de este tensor son +1, o -1 si los índices pueden llevarse al arreglo 0123 mediante una permutación par o impar respectivamente. El número de todas las componentes no nulas es claramente 4!. De esta manera, la contracción

$$\epsilon^{iklm} \epsilon_{iklm} = -4!$$
(14.12)

[†]Claramente también pude escribirse como $ds^2 = g^{ab} dx_a dx_b$ sin embargo es conveniente escribirlo solo como lo muestra la ec.(14.10) para evitar una confusión un poco delicada que sucede en los espacios curvos como veremos mas adelante.

Con respecto a rotaciones del sistema de coordenadas, el tensor e^{iklm} se comporta como un tensor, pero no lo es así mediante reflexiones pues las componentes de un tensor deben cambiar de signo ante estas mismas y por definición este tensor es el mismo en todo sistema coordenado.

Estrictamente hablando, este tensor no es un tensor, es un *pseudotensor*, es decir, se comporta como un tensor mediante rotaciones del sistema coordenado, excepto aquellas que no pueden ser reducidas a rotaciones (es decir, reflexiones).

El producto $e^{iklm}e^{prst}$ forma un tensor (verdadero) de rango 8. La contracción de uno o mas pares de índices da tensores de rango 6, 4, 2 y 0 (un tensor de rango cero es un escalar). Debido a esto, las componentes de estos tensores deben ser proporcionales a productos de δ^i_k , ya que es el único tensor verdadero cuyas componentes son las mismas en todo sistema de referencia. No es complicado mostrar que

$$\varepsilon^{iklm}\varepsilon_{pklm} = -3!\,\delta_p^i, \quad \varepsilon^{iklm}\varepsilon_{prlm} = -2!\,\det\begin{bmatrix} \delta_p^i & \delta_r^i \\ \delta_r^k & \delta_p^k \end{bmatrix},$$

$$\varepsilon^{iklm}\varepsilon_{prsm} = -1!\,\det\begin{bmatrix} \delta_p^i & \delta_r^i & \delta_s^i \\ \delta_p^k & \delta_r^k & \delta_s^k \\ \delta_p^l & \delta_r^l & \delta_s^l \end{bmatrix}, \quad \varepsilon^{iklm}\varepsilon_{prst} = -0!\,\det\begin{bmatrix} \delta_p^i & \delta_r^i & \delta_s^i & \delta_t^i \\ \delta_p^k & \delta_r^k & \delta_s^k & \delta_t^k \\ \delta_p^l & \delta_r^l & \delta_s^l & \delta_t^l \\ \delta_p^m & \delta_r^m & \delta_s^m & \delta_t^m \end{bmatrix}.$$

$$(14.13)$$

El determinante de un tensor A_{ik} de rango 2 es el determinante de la matriz formada por sus componentes. En completa analogía con la ec.(8.6) este determinante está dado por

$$det(A_{ik}) = e^{ikmp} A_{i0} A_{k1} A_{m2} A_{p3}.$$
 (14.14)

De la misma manera, las ecs. (8.7)-(8.8) se generalizan respectivamente como

$$\epsilon^{\text{prst}} A_{\text{ip}} A_{\text{kr}} A_{\text{ls}} A_{\text{mt}} = -\epsilon_{\text{iklm}} \det (A_{\text{kl}}),$$
(14.15)

Copyleft ③ Sergio Mendoza < sergio@astroscu.unam.mx>

$$e^{iklm}e^{prst}A_{ip}A_{kr}A_{ls}A_{mt} = 4! \det(A_{kl}).$$
 (14.16)

Si A^{ik} es un tensor antisimétrico, entonces este tensor y el pseudotensor $A^{*ik} \equiv \frac{1}{2} \epsilon^{iklm} A_{lm}$ se dice que son duales uno al otro. De la misma manera, $\epsilon^{iklm} A_m$ es un pseudotensor antisimétrico de rango 3 dual al vector A^i . El producto $A^{ik} A^*_{ik}$ es evidentemente un pseudoescalar.

El cuatro-gradiente de un escalar ξ se define como el cuatro-vector

$$\partial \xi / \partial x^{i} = \left(\frac{1}{c} \frac{\partial \xi}{\partial t}, \nabla \xi\right).$$
 (14.17)

La diferencial de un escalar dξ

$$d\xi = \frac{\partial \xi}{\partial x^{i}} dx^{i}, \tag{14.18}$$

es también un escalar ya que es la contracción de dos vectores. El divergente del vector A^i se define como $\partial A^i/\partial x^{i\dagger}$.

En el espacio Euclidiano de tres dimensiones uno puede integrar a lo largo de una curva, al rededor de un área y dentro de un volumen. La generalización en el espacio de cuatro dimensiones como lo hemos definido hasta ahora se lleva a cabo de la siguiente manera

- $\ \$ Integral sobre una curva en el cuatro-espacio. $\ \Rightarrow$ En este caso el elemento de integración es el elemento de línea que es el vector dx^i .
- Integral sobre una superficie de dos dimensiones en el cuatro-espacio. \Rightarrow Para buscar el elemento de integración en este caso es importante observar lo que sucede en el espacio Euclidiano de tres dimensiones. En este espacio la proyección del área que hace el paralelogramo formado por los vectores dr y dr' en los planos coordenados $x_{\alpha}x_{\beta}$ está dada por $dx_{\alpha}dx'_{\beta}-dx_{\beta}dx'_{\alpha}$. De la misma manera, en el cuatro-espacio el elemento de área está dado por el tensor antisimétrico $df^{ik}=dx^i dx'^k-dx^k dx'^i$. Las componentes de este tensor son las proyecciones del elemento de área en cada uno de los planos coordenados. Sin embargo, en el tres-espacio, uno no utiliza el tensor $df^{\alpha\beta}=dx^{\alpha}dx'^{\beta}-dx^{\beta}dx'^{\alpha}$ como elemento de integración, sino el vector df_{α} que es dual a este tensor $df_{\alpha}=\frac{1}{2}\epsilon_{\alpha\beta\gamma}df_{\beta\gamma}$.

[†]En general uno utiliza siempre las componentes covariantes del cuatro-operador $(\partial/\partial x^i)$. En raras ocasiones se habla de la derivada con respecto a la componente contravariante. Para este caso el operador de diferenciación es $\partial/\partial x_i = (\partial/c\partial t, -\nabla)$.

Geométricamente, este es un vector normal al elemento de superficie e igual en magnitud al área de el elemento. En el cuatro-espacio no es posible construir este vector, sin embargo uno puede construir el tensor dual df*ik al tensor dfik

$$df^{*ik} = \frac{1}{2} \epsilon^{iklm} df_{lm}. \tag{14.19}$$

De la misma manera, este tensor describe a un elemento de área igual y normal al elemento de la superficie df^{ik} . Esto último es claro ya que $df^{ik}df^*_{ik} = 0$.

 $\hat{\tau}$ Integral sobre una hipersuperficie de tres dimensiones. \Rightarrow El volumen del paralelepípedo que forman tres vectores $d\mathbf{r}$, $d\mathbf{r}'$, $d\mathbf{r}''$ está dado por $(d\mathbf{r} \wedge d\mathbf{r}') \cdot d\mathbf{r}''$, que puede escribirse como

$$\det \begin{bmatrix} dx_{\alpha} & dx'_{\alpha} & dx''_{\alpha} \\ dx_{\beta} & dx'_{\beta} & dx''_{\beta} \\ dx_{\gamma} & dx'_{\gamma} & dx''_{\gamma} \end{bmatrix} \equiv dS_{\alpha\beta\gamma}. \tag{14.20}$$

Si ahora pensamos en este volumen como sumergido en un espacio cuatro-dimensional, entonces podemos decir que la proyección del paralelepípedo -es decir, el "área" de la hipersuperficie- generada por los cuatro-vectores dx^i , dx''^i , y dx''^i está dada por los determinantes

$$\det\begin{bmatrix} dx^{i} & dx'^{i} & dx''^{i} \\ dx^{k} & dx'^{k} & dx''^{k} \\ dx^{l} & dx'^{l} & dx''^{l} \end{bmatrix} \equiv dS^{ikl}.$$
 (14.21)

Es conveniente utilizar como elemento de integración sobre la hipersuperficie el cuatrovector dSⁱ dual al tensor dS^{iklm} dado por

$$dS^{i} = -\frac{1}{6} \epsilon^{iklm} dS_{klm}, \qquad dS_{klm} = \epsilon_{pklm} dS^{n}. \tag{14.22}$$

Geométricamente dS^i es un cuatro-vector igual en magnitud a las "caras" del elemento de hipersuperficie y normal al mismo. De la definición anterior se sigue que $dS^0 = dS^{123} = dxdydz$. En otras palabras, este es el elemento de volumen dV en el tres-espacio. Este volumen es justamente la proyección del elemento de la hipersuperficie en cuestión en el hiperplano $x^0 = \text{const.}$

ntegral sobre un volumen de cuatro dimensiones. → Evidentemente el elemento

de integración está dado por

$$d\Omega \equiv dx^0 dx^1 dx^2 dx^3 = c dt dV. \qquad (14.23)$$

Es fácil ver que este elemento es un escalar. Bajo cualquier transformación de las variables de integración no primadas a las primadas, el elemento de integración cambia a

$$Jd\Omega' = \frac{\partial(x'^0, x'^1, x'^2, x'^3)}{\partial(x^0, x^1, x^2, x^3)} dx'^0 dx'^1 dx'^2 dx'^3,$$

Para una transformación lineal de la forma $x'^i = a_k^i x^k$, el Jacobiano J es justamente el determinante det $[a_k^i]$. Este mismo es la unidad para rotaciones del sistema coordenado.

De la misma manera que existen los Teoremas de *Gauss* y *Stokes* para el espacio Euclídeo de tres dimensiones, es posible generalizarlos al espacio cuatro-dimensional de manera natural.

La integral sobre una hipersuperficie de tres dimensiones cerrada se transforma en una integral sobre el cuatro-volumen contenido dentro de la misma haciendo el siguiente cambio en la integral

$$dS_i \longrightarrow d\Omega \frac{\partial}{\partial x^i}.$$
 (14.24)

Por ejemplo, la integral de un tensor M^{ip}

$$\oint M^{ip} dS_i = \int \frac{\partial M^{ip}}{\partial x^i} d\Omega.$$
 (14.25)

Esta última identidad, generaliza el Teorema de Gauss.

La integral sobre una superficie de dos dimensiones puede transformarse en la integral sobre cualquier hipersuperficie de tres dimensiones que tenga como frontera a esta dos—superficie. Esto se hace mediante el siguiente cambio

$$df^*_{ik} \longrightarrow dS_i \frac{\partial}{\partial x^k} - dS_k \frac{\partial}{\partial x^i}.$$
 (14.26)

La integral sobre una curva cerrada en el espacio de cuatro—dimensiones se transforma en una integral sobre cualquier superficie de dos dimensiones cuya frontera sea la curva en consideración

$$dx^i \longrightarrow df^{ki} \frac{\partial}{\partial x^k}.$$
 (14.27)

Así pues, la integral de línea de un vector Mⁱ puede ser transformada de la siguiente manera

$$\oint M_i dx^i = \int df^{ik} \frac{\partial M_i}{\partial x^k} = \frac{1}{2} \int df^{ik} \left\{ \frac{\partial M_k}{\partial x^i} - \frac{\partial M_i}{\partial x^k} \right\},$$
(14.28)

que es la generalización del Teorema de Stokes.

Las ventajas de utilizar un espacio de cuatro dimensiones para hacer nuestras matemáticas es clara y lo será aún mas a lo largo de tu carrera científica. Comencemos con una simple aplicación. Definimos la cuatro-velocidad de una partícula en movimiento como el cuatro-vector u^k dado por

$$u^k = \frac{dx^i}{ds}. (14.29)$$

¡Esta definición implica que la cuatro-velocidad es una cantidad adimensional! Utilizando la ec.(12.1) se obtiene que $\gamma(v)$ ds = cdt en donde v es la tres-velocidad de la partícula. Sustituyendo esto en la ec.(14.29) se obtienen las componentes de la cuatro-velocidad

$$u^{k} = \left(\gamma, \gamma \frac{v}{c}\right) = \gamma \left(1, \frac{v}{c}\right). \tag{14.30}$$

Dividiendo la ec.(14.10) por ds se obtiene que

$$u^k u_k = 1, \tag{14.31}$$

es decir, el cuatro-vector de velocidad es un vector unitario que es tangente a la línea de universo x^k de la partícula. Se define la cuatro-aceleración como la derivada de la cuatro-velocidad

$$w^k = \frac{\mathrm{d}^2 x^k}{\mathrm{d}s^2} = \frac{\mathrm{d}u^k}{\mathrm{d}s}.$$
 (14.32)

Utilizando la ec. (14.31) se obtiene que

$$u^{l}w_{l} = 0.$$
 (14.33)

En otras palabras, la cuatro-velocidad y la cuatro-aceleración son cuatro-vectores ortogonales entre sí.

§15. Mecánica relativista

El *Principio de mínima acción* es utilizado para encontrar la ecuación de movimiento de una (o varias) partículas en movimiento en mecánica no-relativista. Ya que este principio es de carácter general en la física, debe se valido en mecánica relativista también.

Para encontrar la acción de una partícula libre observemos que la acción S no debe depender del sistema de referencia que se toma, es decir, debe ser invariante mediante transformaciones de Lorentz. En otras palabras, esta acción debe ser un escalar. El integrando de la acción debe ser una diferencial del primer orden. Naturalmente, el único escalar de primer orden con el cual hemos trabajado hasta ahora es ds. En otras palabras, la acción debe escribirse como

$$S = -\alpha \int_{a}^{b} ds, \qquad (15.1)$$

donde α es una constante de proporcionalidad y la integral es tomada a lo largo de una línea de universo entre dos eventos α y b. Es obvio que α es un escalar positivo ya que la integral $\int_{\alpha}^{b} ds$ toma el valor máximo a lo largo de una línea recta como vimos en §12. Tradicionalmente la acción se escribe como

$$S = \int_{t_1}^{t_2} L dt, \tag{15.2}$$

donde L es el Lagrangiano del sistema. De las ecs.(15.1)-(15.2) se obtiene que

$$L = -\alpha c \sqrt{1 - v^2/c}. \tag{15.3}$$

donde v es la velocidad de la partícula en cuestión. Para calcular α , tomemos el límite cuando $c \to \infty$ y comparemos con el caso no-relativista

$$L \to -\alpha c + \alpha v^2/2c$$
, cuando $c \to \infty$. (15.4)

El primer término del lado derecho de esta ecuación puede ser despreciado pues es una

constante (las constantes no alteran al Lagrangiano). De esta manera y como $L = mv^2/2$ en mecánica clásica (donde m es la masa de la partícula), se sigue que $\alpha = mc$.

Tarea 3

- (1) Calcula el momento p de una partícula libre en mecánica relativista utilizando el hecho de que $p = \partial L/\partial v$.
- (II) La energía E de una partícula está dada por

$$E = \mathbf{p} \cdot \mathbf{v} - L. \tag{15.5}$$

Calcula su valor en mecánica relativista y muestra que cuando la velocidad de la partícula tiende a cero, esta energía tiene un valor en reposo de $E=mc^2$. Encuentra el valor de esta energía para velocidades pequeñas $v/c \ll 1$ y verifica que este valor corresponde con la energía cinética de una partícula libre en mecánica no-relativista.

(III) Muestra que para cuando la velocidad de la partícula alcanza la velocidad de la luz, el momento y la energía tienden a infinito. En otras palabras, las partículas con masa finita no pueden viajar a la velocidad de la luz.

Para hacer el cálculo en cuatro dimensiones, variemos la acción, escribiendo esta variación como δ para no confundirnos con las demás diferenciales

$$\delta S = -mc\delta \int_a^b ds = 0.$$

Utilizando la ec.(14.10) se obtiene que $ds\delta(ds) = dx^i \delta dx_i$ y por lo tanto

$$\delta S = -mc \int_{a}^{b} \frac{dx_{i} \delta dx^{i}}{ds} = -mc \int_{a}^{b} u_{i} d\delta x^{i} = -mc \left\{ u_{i} \delta x^{i} \middle|_{a}^{b} + \int_{a}^{b} \delta x^{i} \frac{du_{i}}{ds} ds \right\}, \quad (15.6)$$

donde u_i es la cuatro-velocidad y la última igualdad del lado derecho en la ecuación previa se obtuvo integrando por partes. Debido a que $\delta x_i|_{\alpha} = \delta x_i|_{b} = 0$ (la variación se lleva a

cabo para distintas trayectorias para puntos fijos α y b) y como $\delta S = 0$, de aquí se sigue que la ecuación de movimiento está dada por

$$du_i/ds = 0$$
, o bien $u_i = const.$ (15.7)

Para determinar la variación de la acción como función de las coordenadas, dejemos el punto a fijo y se variemos el punto b. De esta manera

$$\delta S = -mc\delta x^{i}. \tag{15.8}$$

De mecánica no-relativista, sabemos que el tres-momento está dado por $\partial S/\partial r$ y que la energía (Hamiltoniano) está dada por $-\partial S/\partial t$. En mecánica relativista, definimos el cuatro-momento (o vector energía momento) como

$$p_{i} = \frac{\partial S}{\partial x^{i}}.$$
 (15.9)

Sus componentes están dadas por $p^i = (E/c, p) = mcu^i$, donde p es el tres-momento. Evidentemente $p^i p_i = mc^2$.

La cuatro-fuerza gi se define como

$$g^{i} = \frac{dp^{i}}{ds} = mc \frac{du^{i}}{ds} = (f \cdot v\gamma/c^{2}, f\gamma/c),$$
 (15.10)

donde f es el tres-vector fuerza y $\gamma = \sqrt{(1-v^2/c^2)}$ es el factor de Lorentz de la partícula en movimiento.

Capítulo III

Electromagnetismo.

§16. Introducción

El hecho de que las interacciones producidas por las fuerzas en la física viajen a una velocidad máxima, la velocidad de la luz, tiene consecuencias muy importantes sobre el concepto de campo. En mecánica no-relativista, donde las interacciones se transmiten inmediatamente a todo el espacio, resulta que cuando las partículas que producen el campo se mueven, el resultado de su movimiento es transmitido inmediatamente a todo el espacio y por lo tanto el campo toma su configuración nueva de manera inmediata. En otras palabras, el campo es una mera construcción matemática.

En mecánica relativista, las interacciones entre diversas partículas en un campo no se lleva acabo de manera inmediata. Por lo tanto, si alguna de las partículas en interacción se mueve, la información de su movimiento tardará un cierto tiempo en llegar a las demás partículas. Antes del arrivo de la información, las demás partículas se comportarán como si la primer partícula se encontrará en su posición antigua. Dicho de otro modo, el campo cerca de estas partículas se mantiene sin cambio. Es hasta un tiempo después cuando el campo comienza a reajustarse como debería. Por esta razón el campo en mecánica relativista deja de ser un artificio matemático. Por el contrario, debido a que la transmisión de información se efectúa en un tiempo finito, el campo tiene sentido físico como tal. En otras palabras, en mecánica relativista, los campos jexisten físicamente!

§17. Ecuación de movimiento en un campo electromagnético.

Supongamos que se tiene un campo electromagnético y que una partícula con carga (positiva, negativa o cero) e se mueve en el mismo. La acción S que describe este movimiento debe estar dada por dos términos aditivos. Uno de estos términos está claramente dado por la acción de una partícula libre, ec.(15.1), en ausencia de campos. El otro término describe la interacción de la partícula con el campo electromagnético. Las propiedades del campo están dadas por un cuatro-vector A^k , el cuatro-vector potencial, que es una función de las coordenadas del espacio-tiempo x^l . El experimento muestra que esta acción está dado por $-(e/c) \int_a^b A_k dx^k$. De esta manera, la acción total de una partícula que se mueve en un campo electromagnético está dada por

$$S = \int_{a}^{b} \left\{ -mc \, ds - \frac{e}{c} A_{q} dx^{q} \right\}, \tag{17.1}$$

entre dos puntos a y b del espacio-tiempo. Las componentes espaciales y la componente temporal del cuatro-vector A^i forman un tres-vector y un escalar verdaderos. Es costumbre escribir

$$A^{r} = (\phi, \mathbf{A}), \tag{17.2}$$

donde la función escalar ϕ se denomina el *potencial escalar* la tres-función vectorial A constituye el *potencial vectorial*. Con esto, y usando el hecho de que dr/dt = v, la ec.(17.2) puede ser escrita como

$$S = \int_{a}^{b} \left\{ -mc ds - e \phi dt + \frac{e}{c} \mathbf{A} \cdot d\mathbf{r} \right\},$$

$$= \int_{a}^{b} \left\{ -mc \sqrt{1 - v^{2}/c^{2}} - e \phi + \frac{e}{c} \mathbf{A} \cdot \mathbf{v} \right\} dt,$$
(17.3)

y por lo tanto el Lagrangiano L de una partícula que se mueve en un campo electromagnético está dado por

$$L = -mc^{2}\sqrt{1 - v^{2}/c^{2}} - e\phi + \frac{e}{c}\mathbf{A} \cdot v.$$
 (17.4)

Copyleft ③ Sergio Mendoza < sergio@astroscu.unam.mx>

La ecuación de movimiento de la partícula está dada por las ecuaciones de Euler–Lagrange[†]

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial \mathbf{L}}{\partial \mathbf{v}} \right) = \frac{\partial \mathbf{L}}{\partial \mathbf{r}}.\tag{17.5}$$

Calculemos primeramente el momento generalizado $P = \partial L/\partial r$

$$\begin{split} \frac{\partial \mathbf{L}}{\partial \mathbf{r}} &= \frac{e}{\mathsf{c}} \mathbf{grad} \left(\mathbf{A} \cdot \mathbf{v} \right) - e \, \mathbf{grad} \phi, \\ &= \frac{e}{\mathsf{c}} \left(\mathbf{v} \cdot \mathbf{grad} \right) \mathbf{A} + \frac{e}{\mathsf{c}} \mathbf{v} \wedge \mathbf{curl} \mathbf{A} - e \, \mathbf{grad} \phi. \end{split}$$

Con esto, la ecuaciones de Euler-Lagrange, ec.(17.5), está dada por

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\mathbf{p} + \frac{e}{c}\mathbf{A}\right) = \frac{e}{c}\left(\mathbf{v}\cdot\nabla\right)\mathbf{A} + \frac{e}{c}\mathbf{v}\wedge(\nabla\wedge\mathbf{A}) - e\,\nabla\phi.$$

en donde p es el tres-momento de la partícula cuando se mueve libremente (cf. Tarea 3). La derivada dA/dt es la razón de cambio en el tiempo del tres-vector potencial A que se lleva a cabo no solo a posiciones fijas $(\partial A/\partial t)$, sino también la razón de cambio en el tiempo a lo largo de las posiciones en el campo $((dr/dt) \cdot \nabla A)$. En otras palabras, esta derivada es la derivada total con respecto al tiempo: $d/dt = \partial/\partial t + v \cdot \nabla$. Con esto, la ec.(§17) se reduce a

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = -\frac{e}{c}\frac{\partial \mathbf{A}}{\partial t} - e\nabla \phi + \frac{e}{c}\mathbf{v}\wedge(\nabla\wedge\mathbf{A}). \tag{17.6}$$

Esta es la ecuación de movimiento de una partícula en un campo electromagnético. Se denomina la ecuación de Lorentz. El lado izquierdo de la ecuación tiene la taza de cambio del momento de la partícula con respecto al tiempo y por lo tanto el lado derecho debe ser igual a la fuerza que ejerce el campo electromagnético sobre la partícula mientras se mueve a lo largo del campo. El primer y segundo término de la ec.(17.6) no depende explícitamente de la velocidad. A este tipo de fuerza se le denomina fuerza eléctrica. La intensidad del campo eléctrico vectorial E se define como

[†]Por si acaso no te ha quedado aún claro, aquí se está escribiendo $\partial L/\partial v \equiv e_{\mu}\partial L/\partial v_{\mu}$, y la coordenada r se deja fija (i.e. esta operación significa tomar los gradientes de L con respecto a la velocidad, dejando fija la posición). De la misma manera $\partial L/\partial v \equiv e_{\alpha}\partial L/\partial x_{\alpha}$ cuando v está fija.

$$E = -\frac{1}{c} \frac{\partial A}{\partial t} - \operatorname{grad} \phi. \tag{17.7}$$

El tercer término de la ec.(17.6) depende explícitamente de la velocidad. A este tipo de fuerza se le conoce como fuerza magnética. La intensidad del *campo magnético* vectorial B se define como

$$B = \operatorname{curl} A. \tag{17.8}$$

Utilizando las ecs.(17.7)-(17.8) se obtiene la famosa relación para la ecuación de Lorentz

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = e\mathbf{E} + \frac{e}{c}\mathbf{v} \wedge \mathbf{B}.\tag{17.9}$$

En mecánica, las ecuaciones de movimiento son invariantes ante la transformación $t \rightarrow -t$. Es decir, ambas direcciones del tiempo (pasado y futuro) son equivalentes. Utilizando la ec.(17.9) es fácil ver que esto también es válido para el caso del campo electromagnético. En efecto, si se hacen los cambios

$$t \rightarrow -t, \qquad E \rightarrow E, \qquad B \rightarrow -B, \tag{17.10}$$

entonces utilizando la ec.(17.9) se ve que la ecuación de movimiento permanece invariable. Los cambios en los campos E y B en la ec.(17.10) corresponden a

$$\phi \rightarrow \phi$$
, $A \rightarrow -A$. (17.11)

En otras palabras, un posible movimiento en el campo electromagnético existe si el movimiento reversible (con $t \to -t$) si la dirección del campo magnético B es cambiada.

Por otra parte, si hacemos el cambio

$$A_q \longrightarrow A_q - \frac{\partial f}{\partial x^q},$$
 (17.12)

en la acción dada por la ec.(17.1) entonces la acción cambia de la siguiente manera

$$S \longrightarrow S + \frac{e}{c} \int_{a}^{b} \frac{\partial f}{\partial x^{k}} dx^{k} = S + \frac{e}{c} \int_{a}^{b} df.$$
 (17.13)

Copyleft ③ Sergio Mendoza < sergio@astroscu.unam.mx>

El último término de la ec.(17.13) se puede despreciar por ser una diferencial exacta, la cual no tiene efecto en las ecuaciones de movimiento (la variación de una diferencial exacta es idénticamente igual a cero pues los extremos a y b de la curva de integración se toman fijos al variar la acción). En otras palabras, el cambio hecho en la ec.(17.12) no altera las ecuaciones de movimiento. Se dice entonces que el campo electromagnético es invariante a transformaciones de norma. Utilizando la ec.(17.2), la ec.(17.12) toma la forma

$$\mathbf{A} + \mathbf{grad} \, \phi \longrightarrow \mathbf{A}, \qquad \phi - \frac{1}{c} \frac{\partial f}{\partial t} \longrightarrow \phi.$$
 (17.14)

§18. Tensor electromagnético

Derivemos ahora la ecuación de movimiento (como la ec.(17.6) pero en forma de cuatro dimensiones. Para esto es mas conveniente variar directamente la acción de la ec.(17.1)

$$\delta S = \delta \int_{a}^{b} \left\{ -mc \, ds - \frac{e}{c} A_{q} dx^{q} \right\} = 0.$$
 (18.1)

Utilizando el hecho de que $ds^2 = dx_k dx^k$ se obtiene de esta ecuación

$$\delta S = -\int_a^b \left\{ m c u_k \, \delta dx^k + \frac{e}{c} A_q \, d\delta x^q + \frac{e}{c} \delta A_k \, dx^k \right\} = 0,$$

donde $u^m = dx^m/ds$ es la cuatro-velocidad. Integrando los dos primeros términos de esta ecuación por partes se obtiene

$$\int_{a}^{b} \left\{ mc \frac{du_{k}}{ds} ds \, \delta dx^{k} + \frac{e}{c} dA_{q} d\delta x^{q} - \frac{e}{c} \, \delta A_{k} dx^{k} \right\} - \left\{ \left(mcu_{k} + \frac{e}{c} A_{k} \right) \delta x^{k} \right\}_{a}^{b} = 0. \quad (18.2)$$

El segundo término del lado izquierdo de la ec.(18.2) es cero pues la variación se lleva acabo con puntos extremos a y b fijos. Debido a que $\delta A_k = (\partial A_k/\partial x^m) \delta x^m$ y $dA_k = (\partial A_k/\partial x^m) dx^m$ entonces la ec.(18.2) puede escribirse como

$$\int_{0}^{b} \left\{ mc \frac{du_{k}}{ds} - \frac{e}{c} \left(\frac{\partial A_{k}}{\partial x^{m}} - \frac{\partial A_{m}}{\partial x^{k}} \right) u^{k} \right\} ds \, \delta x^{m} = 0.$$

Debido a la arbitrariedad de δx^{m} en la variación, necesariamente se obtiene

$$mc\frac{du^k}{ds} = \frac{e}{c}F^{km}u_m, \tag{18.3}$$

en donde el tensor electromagnético o tensor de Faraday de rango dos antisimétrico F_{kl} está definido por

$$F_{ik} = \frac{\partial A_k}{\partial x^i} - \frac{\partial A_i}{\partial x^k}.$$
 (18.4)

La ecuación de movimiento de una partícula que se mueve en un campo electromagnético está dada por la ec.(18.3). Dicho de otro modo, la ec.(18.3) es la ecuación de Lorentz en cuatro dimensiones. Sus componentes espaciales llevan exactamente a la ec.(17.6). La componente temporal implica que la razón de cambio de la energía cinética ($E_{\rm cin} = \gamma mc^2$, i.e. la energía cinética contiene la energía en reposo mas la energía cinética de una partícula -cf. ec.(15.5)) con respecto al tiempo está dada por †

$$\frac{dE_{cin}}{dt} = v \cdot \frac{dp}{dt} = eE \cdot v. \tag{18.5}$$

Utilizando la definición del tensor electromagnético dada por la ec.(18.4) es fácil verificar que

$$F_{ik} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -Bz & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}, \qquad F^{ik} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -Bz & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}.$$
(18.6)

Las cantidades

$$F_{ik}F^{ik} = inv$$
 $e^{iklm}F_{ik}F_{lm} = inv$, (18.7)

forman un escalar y un pseudoescalar respectivamente que son invariantes ante transformaciones de Lorentz. Utilizando la definición del tensor electromagnético ec.(18.4) y la definición del campo eléctrico y magnético, ecs.(17.7)-(17.8), las ecs.(18.7) implican que

[†]Esta relación puede calcularse directamente utilizando la ecuación de Lorentz, eq.(17.7).

$$B^2 - E^2 = inv, E \cdot B = inv.$$
 (18.8)

respectivamente.

§19. Ecuaciones del campo electromagnético

Utilizando la definición del tensor de Faraday dada por la ec.(18.4) es claro que

$$\epsilon^{iklm} \frac{\partial F_{lm}}{\partial x^k} = 0. \tag{19.2}$$

Las cuatro ecuaciones que aparecen en la ec.(19.2) forman el primer par de las ecuaciones de Maxwell

$$\mathbf{divB} = 0, \tag{19.3}$$

$$\operatorname{curl} \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0. \tag{19.4}$$

La ec.(19.3) corresponde a la componente temporal de la ec.(19.2) y las tres componentes de la ec.(19.4) corresponden a las componentes espaciales de la ec.(19.2). Las ecuaciones que describen el campo electromagnético no quedan determinadas por la ec.(19.2) únicamente. Esto se debe a que las cuatro ecuaciones diferenciales de esta ecuación no son suficientes para encontrar las seis (digamos E y B) componentes independientes del tensor $F_{\mu\nu}$.

Para encontrar las demás relaciones que relacionan al campo es necesario construir la acción total S del sistema. Esta acción contiene tres términos aditivos

$$S = S_{m} + S_{mf} + S_{f}. {19.5}$$

S_m corresponde a la acción de las partículas materiales libres. Para el caso de una única partícula libre esta acción está dada por la ec.(15.1). En el caso de que se tengan varias

$$\frac{\partial F_{ik}}{\partial x^l} + \frac{\partial F_{kl}}{\partial x^i} + \frac{\partial F_{li}}{\partial x^k} = 0, \tag{19.1}$$

que es la manera en la cual se presenta usualmente.

[†]La ec.(19.2) puede escribirse como

partículas cargadas, entonces esta acción está dada por

$$S_{m} = -\sum_{m} mc \int ds, \qquad (19.6)$$

donde la suma se lleva a cabo para cada una de las partículas materiales en el campo. La acción $S_{\rm mf}$ corresponde a la acción debida a la interacción entre las partículas materiales y el campo. En el caso de una sola partícula interaccionando con el campo electromagnético esta acción está dada por el segundo término del lado derecho de la ec.(17.1). En el caso de una colección de partículas esta acción está dada por

$$S_{\rm mf} = -\sum \frac{e}{c} \int A_k dx^k. \tag{19.7}$$

En esta última suma, el cuatro-vector A_k está evaluado justamente en la posición donde se encuentra la partícula en cuestión en el espacio-tiempo.

Finalmente la acción S_f es la acción que depende únicamente de las propiedades del campo, sin importar las partículas que se encuentren en el mismo. En otras palabras, esta es la acción que corresponde al campo mismo en ausencia de cargas. Hasta ahora habíamos utilizado únicamente la acción de la ec.(17.1), es decir, $S_m + S_{mf}$ solamente. Esto ya que únicamente habíamos estado interesados en encontrar ecuaciones que describieran el movimiento de partículas materiales en interacción con el campo.

La forma matemática de la acción S_f puede calcularse utilizando el resultado experimental de que los campos electromagnéticos satisfacen el principio de superposición: "el campo total producido por un conjunto de cargas es igual a la suma vectorial de cada uno de los campos producidos por cada partícula". Esto significa que si uno encuentra dos soluciones F_{kl} y F'_{kl} al campo electromagnético, entonces la suma $F_{kl}+F'_{kl}$ también será una solución. Esto significa que las ecuaciones que describen al campo electromagnético deben ser ecuaciones diferenciales lineales. De esta manera, el integrando de la acción S_f debe ser una función cuadrática (e invariante) en los campos. De esta manera, al tomar la variación δS_f se tendrá que el orden de la cuadrática se reducirá para convertirse en una función lineal. Debido a que el potencial A_k no está determinado de manera única (cf. ec.(17.14)), entonces este mismo no puede aparecer dentro de la integral de S_f . La única cantidad que debe aparecer es el escalar $F^{ik}F_{ik}^{\dagger}$. De esta manera se obtiene que

 $^{^\}dagger$ Uno queda tentado en pensar si e^{iklm} F $_{ik}$ F $_{lm}$ podría utilizarse como la cuadrática buscada. El problema

$$S_{f} = -\frac{1}{16\pi c} \int F^{ik} F_{ik} d\Omega.$$
 (19.9)

El signo menos de esta ecuación se debe al hecho de que $F^{ik}F_{ik} = 2 (B^2 - E^2)$. El campo eléctrico E contiene la derivada $-\partial \mathbf{A}/\partial t$ (cf. ec.(17.7)). Por lo tanto, uno de los términos del producto $F^{ik}F_{ik}$ será igual a $-\partial \mathbf{A}/\partial t$ lo cual no es posible puesto que si \mathbf{A} tiene cambios suficientemente grandes en periodos de tiempo suficientemente pequeños entonces es siempre posible hacer a S_f una cantidad negativa grande. De esta manera S_f no alcanzaría un mínimo en el intervalo de tiempo que se está tomando en cuenta. El valor de $1/16\pi c$ en la ec.(19.9) depende de las unidades que se utilicen. En este caso se está suponiendo el sistema Gaussiano de unidades (cgs) para el campo electromagnético. Existe también el sistema de Heaviside en donde la constante de proporcionalidad entre S_f y la integral del lado derecho de la ec.(19.9) está dado por -1/4. Este sistema es muy útil pues factores de 4π no aparecen en las ecuaciones de campo (a costa de que un factor de π aparece en la ley de Coulomb electrostática).

De la ec.(19.6), la ec.(19.7) y la ec.(19.9) se sigue que la acción total, ec.(19.5) está dada por

$$S = -\sum \int mcds - \sum \int \frac{e}{c} A_k dx^k - \frac{1}{16\pi c} \int F^{ik} F_{ik} d\Omega.$$
 (19.10)

Para el caso de esta acción de ninguna manera se supone que las cargas son pequeñas (i.e. no son cargas de prueba) como se hizo antes para encontrar las ecuaciones de movimiento. En otras palabras A_k y F_{kl} se refieren al campo electromagnético externo mas el campo producido por las partículas que se encuentran interaccionando en el mismo. Por esta razón los campos A_k y F_{km} son funciones que dependen de la posición, el tiempo y las velocidades

es que esta cantidad es un pseudoescalar y por lo tanto no es una cantidad que deba aparecer bajo el signo integral de $S_{\mathbf{f}}$. Otra manera de verlo es utilizando el hecho de que este pseudoescalar puede escribirse como

$$\varepsilon^{iklm} F_{ik} F_{lm} = 4 \frac{\partial}{\partial x^i} \left(\varepsilon^{iklm} A_k \frac{\partial A_m}{\partial x^l} \right). \tag{19.8}$$

Al sustituir esto en el integrando para S_f se obtiene (mediante el teorema de la divergencia) la integral de lo que está dentro del paréntesis en el lado de la derecha de la ec.(19.8) en la frontera de todo el espacio—tiempo. Es decir, una integral sobre la hipersuperficie de tres dimensiones que es frontera de todo el espacio—tiempo. El valor de esta integral es evidentemente cero, pues los campos (en este caso electromagnéticos) se anulan en infinito.

de las cargas.

En general, las cargas no son puntuales, sino que se encuentran distribuidas en volúmenes en el espacio. Por ejemplo, la carga total contenida en un volumen V es igual a la integral $\int \rho dV$, en donde la densidad de carga ρ se define como la cantidad de carga infinitesimal por unidad de volumen y es una función que depende de las posiciones y del tiempo. Para el caso de una distribución de partículas puntuales, esta densidad es igual a

$$\rho = \sum_{\mathbf{q}} e_{\mathbf{q}} \delta \left(\mathbf{r} - \mathbf{r}_{\mathbf{q}} \right), \tag{19.11}$$

en donde δ es la función Delta de Dirac en tres dimensiones y la suma se lleva a lo largo de todas las cargas q. La carga es un invariante de Lorentz y por lo tanto el producto ρdV es un invariante de Lorentz (a pesar de que ρ no es un invariante). Debido a que $dedx^i = \rho dV dt (dx^i/dt)$ es un cuatro-vector (pues el lado izquierdo de esta ecuación lo es), entonces como dV dt es un escalar (cf. ec.(14.23) entonces la cantidad

$$j^{k} = \rho \frac{\mathrm{d}x^{k}}{\mathrm{d}t},\tag{19.12}$$

resulta ser un cuatro vector. Las cuatro cantidades j^k se denominan como el *cuatro-vector* de corriente-carga. Sus componentes espaciales forman un tres-vector denominado el vector de densidad de corriente

$$j = \rho v. \tag{19.13}$$

Utilizando el hecho de que la carga total e está dada por

$$e = \int \rho dV, \qquad (19.14)$$

la ec.(19.10) puede escribirse como

$$S = -\sum \int mcds - \frac{1}{c^2} \int A_k j^k dx^k - \frac{1}{16\pi c} \int F^{ik} F_{ik} d\Omega.$$
 (19.15)

Esta es la acción total buscada. Para encontrar las ecuaciones de campo ("las ecuaciones de movimiento para el campo F_{kl} ") debemos variar la acción δS e igualarla a cero, de acuerdo con el principio de mínima acción. Esto se hace mediante la suposición de que el movimiento

de las cargas está dado y se varía solamente el potencial. Cuando queríamos encontrar las ecuaciones de movimiento de una partícula moviéndose en el campo, supusimos que el campo estaba dado y variamos únicamente la trayectoria de la partícula. Por esta razón la variación $\delta S_{\rm m}=0$. Además, debido a que j^p está relacionado con las coordenadas como lo muestra la ec.(19.12) entonces su variación es idénticamente igual a cero. De tal forma que la variación de la ec.(19.16) está dada por

$$\delta S = 0 = -\int \frac{1}{c} \left\{ \frac{1}{c} j^{p} \delta A_{p} + \frac{1}{8\pi} F^{pm} \delta F_{pm} \right\} d\Omega. \tag{19.16}$$

Tarea 4

(1) Sustituye la ec.(18.4) en la ec.(19.16) y muestra que

$$\delta S = 0 = -\int \frac{1}{c} \left\{ \frac{1}{c} j^{i} \delta A_{i} - \frac{1}{4\pi} F^{ik} \frac{\partial}{\partial x^{k}} \delta A_{i} \right\} d\Omega.$$
 (19.17)

(II) Utiliza el teorema de Stokes para el segundo miembro del lado derecho de la ec.(19.17) y muestra que, como la intensidad del campo electromagnético se anula en infinito entonces

$$\int \left\{ \frac{1}{c} j^{p} + \frac{1}{4\pi} \frac{\partial F^{pk}}{\partial x^{k}} \right\} \delta A_{p} d\Omega = 0.$$
 (19.18)

Debido a que las variaciones de δA_k se llevan acabo de forma arbitraria, entonces el integrando de la ec.(19.18) es necesariamente igual a cero

$$\frac{\partial F^{mk}}{\partial x^k} = -\frac{4\pi}{c} j^m. \tag{19.19}$$

Esta es la relación buscada que junto con la ec.(18.4) constituyen las ecuaciones del campo electromagnético (*Ecuaciones de Maxwell*). La componente temporal y las tres componentes espaciales de la ec.(19.19) pueden escribirse respectivamente como

$$\operatorname{div} \mathsf{E} = 4\pi\rho,\tag{19.20}$$

$$\mathbf{curl}\,\mathbf{B} - \frac{1}{\mathsf{c}}\frac{\partial \mathsf{E}}{\partial \mathsf{t}} = \frac{4\pi}{\mathsf{c}}\mathbf{j}.\tag{19.21}$$

Estas dos últimas ecuaciones junto con las ecs.(19.3)-(19.4) constituyen las ya bien conocidas ecuaciones de Maxwell para el campo electromagnético.

Capítulo IV

Hidrodinámica Relativista

§20. Tensor de energía-momento

Consideremos un sistema tal que su acción S este dada por

$$S = \int \Lambda \left(q, \frac{\partial q}{\partial x^{i}} \right) dV dt = \frac{1}{c} \int \Lambda d\Omega, \tag{20.1}$$

donde Λ es una función de las cantidades q que describen el estado del sistema y de sus derivadas con respecto a las coordenadas del cuatro-espacio $\partial q/\partial x^k$. Aquí estamos escribiendo sin pérdida de generalidad únicamente una sola cantidad q. Los resultados obtenidos mas abajo son fácilmente generalizados para un sistema en el cual Λ $(q_{(1)}, q_{(2)} \dots \partial q_{(1)}/\partial x^i, \partial q_{(2)}/\partial x^i \dots)$. Como sabemos, toda acción debe tener la forma $S = \int L dt$, donde L es el Lagrangiano del sistema. Con esto y la ec.(20.1) se obtiene que $\int \Lambda dV = L$. En otras palabras, Λ es una densidad Lagrangiana. De la misma manera que se hace en mecánica, el hecho de que el sistema sea cerrado implica que Λ no depende explícitamente de las coordenadas χ^k .

Las ecuaciones de campo son obtenidas mediante el principio de mínima acción mediante el cual la variación de la acción δS tiene que alcanzar un mínimo para trayectorias suficientemente pequeñas. Matemáticamente esto puede escribirse como $\delta S=0$. De esta manera, variando la acción en la ec.(20.1) y escribiendo $\partial q/\partial x^k=q_{,k}$ obtenemos

$$\delta S = \frac{1}{c} \int d\Omega \left\{ \frac{\partial \Lambda}{\partial q} \delta q + \frac{\partial \Lambda}{\partial q_{,i}} \delta q_{,i} \right\} = \frac{1}{c} \int d\Omega \left\{ \frac{\partial \Lambda}{\partial q} \delta q + \frac{\partial}{\partial x^{i}} \left[\delta q \frac{\partial \Lambda}{\partial q_{,i}} \right] - \delta q \frac{\partial}{\partial x^{i}} \frac{\partial \Lambda}{\partial q_{,i}} \right\} = 0.$$
(20.2)

La segunda integral del lado derecho se cancela mediante el uso del teorema de Stokes en todo el espacio. Del resto de la igualdad se sigue que

$$\frac{\partial}{\partial x^{i}} \frac{\partial \Lambda}{\partial q_{,i}} - \frac{\partial \Lambda}{\partial q} = 0. \tag{20.3}$$

Calculemos ahora $\partial \Lambda / \partial x^i$ utilizando la regla de la cadena y la relación anterior

$$\frac{\partial \Lambda}{\partial x^{i}} = \frac{\partial \Lambda}{\partial q} \frac{\partial q}{\partial x^{i}} + \frac{\partial \Lambda}{\partial q_{,k}} \frac{\partial q_{,k}}{\partial x^{i}}
= q_{,i} \frac{\partial \Lambda}{\partial q_{,k}} + \frac{\partial \Lambda}{\partial q_{,k}} \frac{\partial q_{,i}}{\partial x^{k}}.$$
(20.4)

De esta manera, si definimos

$$T_{i}^{k} = \frac{\partial \Lambda}{\partial g_{ik}} q_{,i} - \Lambda \delta_{i}^{k}. \tag{20.5}$$

entonces[†]

$$\frac{\partial \mathsf{T}_{i}^{k}}{\partial \mathsf{x}^{k}} = 0. \tag{20.6}$$

La ec.(20.6) es el equivalente a una ecuación de movimiento. En el caso de estar describiendo un campo, esta misma nos da las ecuaciones que describen al campo como función de las coordenadas x^i .

Integremos ahora la ec.(20.6) sobre el volumen Ω del cuatro-espacio que es encapsulada por la hipersuperficie S

[†]Es un poco laborioso mostrar que el tensor $T^{ik}=T^{ki}$, es decir, es un tensor simétrico. La demostración tradicional se basa en que el tensor T^{ik} no está definido de manera única, pues si a este tensor se le suma la cantidad $\partial \Omega^{ikl}/\partial x^l$, donde $\Omega^{ikl}=-\Omega^{ilk}$ la ecuación de movimiento, ec.(20.6) también se satisface. Resulta que la condición natural para que el tensor T^{ik} quede determinado de manera única es cuando este tensor es simétrico.

$$\int \frac{\partial T_i^k}{\partial x^k} d\Omega = \oint T_i^k dS_k = 0.$$
 (20.7)

Escojamos la hipersuperficie S de tal manera que contenga todas las tres dimensiones espaciales tal como se muestra en la fig.(IV.1). En otras palabras, la hipersuperficie S es tal que se encuentra rodeada por los planos $x^0 = const_{(A)}$ y $x^0 = const_{(B)}$. De esta manera la integral del lado derecho de la ec.(20.7) se reduce a

$$\left\{\int\limits_{x^{(A)}} + \int\limits_{x^{(B)}} \right\} T_i^k dS_k = 0,$$

pero como $dS_k^{(A)} = -dS_k^{(B)} \equiv dS_k$, entonces el vector

$$P_{i} \equiv \zeta \int T_{i}^{k} dS_{k} = const, \qquad (20.8)$$

sobre cualquier hipersuperficie $x^0 = \text{const}$. En otras palabras, el vector P^i es una cantidad conservada.

Naturalmente, en un sistema cerrado el cuatro-vector que se conserva es el cuatromomento. De esta manera, P^i lo identificamos con el cuatro-momento. Ahora bien, como $P^0 = \zeta \int T^{0k} dS_k = \zeta \int T^{00} dV$ y ya que $T^{00} = T_{00} = \dot{q}\partial\Lambda/\partial\dot{q} - \Lambda$ con $\dot{q} \equiv \partial q/\partial t$, podemos identificar a T^{00} con la energía del sistema, ya que cuando esta última es conservada, sabemos que el Hamiltoniano H es igual a la energía del sistema E y tiene un valor de $H = E = p\dot{q} - L = \dot{q}\partial L/\partial\dot{q} - L$. Esta última relación es semejante al valor de T^{00} . De esta manera $E \propto \int T^{00} dV$. Debido a esta relación y como la componente espacial del cuatromomento es E/c, es evidente que la constante de proporcionalidad es 1/c. De esta manera

$$P^{i} = \frac{1}{c} \int T^{ik} dS_{k}. \tag{20.9}$$

Cuando se toma la hipersuperficie $x^0 = \text{const}$, la ec.(20.9) implica que $P^i = \int T^{i0} dV/c$. De esta manera, P^0 representa la energía del sistema dividida por la velocidad de la luz c y P_{α} es el tres-vector de momento. Con esto se ve que T^{00} es la densidad de energía

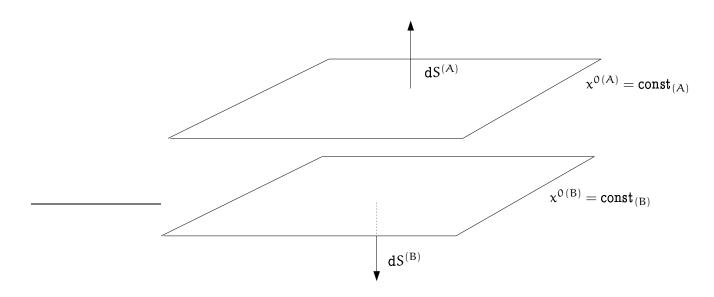


Figura IV.1: Integración del tensor de energía-momento en un volumen de cuatro dimensiones encapsulado entre las hipersuperficies $\chi^{0(A)}$ y $\chi^{0(B)}$. Usando el teorema de Gauss la integral puede ser extendida a lo largo de las hipersuperficies mostradas en la figura. La integral de los extremos en infinito tiene valor nulo.

(energía por unidad de volumen) y $T^{0\alpha}/c$ es la densidad de momento (momento por unidad de volumen). Para entender el significado físico de las demás componentes, separemos la ec.(20.6) en sus componentes temporal y espacial respectivamente

$$\frac{1}{c}\frac{\partial T^{00}}{\partial t} + \frac{\partial T^{0\alpha}}{\partial x^{\alpha}} = 0, \tag{20.10}$$

$$\frac{1}{c} \frac{\partial T^{00}}{\partial t} + \frac{\partial T^{0\alpha}}{\partial x^{\alpha}} = 0,$$

$$\frac{1}{c} \frac{\partial T^{\alpha 0}}{\partial t} + \frac{\partial T^{\alpha \beta}}{\partial x^{\beta}} = 0.$$
(20.10)

Si ahora integramos la ec. (20.10) sobre un volumen de tres dimensiones dV y utilizamos el teorema de Gauss, entonces

$$\frac{\partial}{\partial t}\int T^{00}dV = -c \oint T^{0\alpha}d\alpha_{\alpha}.$$

El lado izquierdo de esta igualdad representa el cambio en el tiempo de la energía del sistema. Por lo tanto, el lado derecho debe ser la energía que fluye a través de la frontera del volumen V por unidad de tiempo. Así pues, la cantidad $S_{\alpha} \equiv c T^{0\alpha}$ es un vector que representa la densidad de flujo de energía, es decir, la cantidad de energía que fluye por unidad de área por unidad de tiempo.

De la misma manera, integrando la ec.(20.11) en un tres-volumen y utilizando el teorema de la divergencia se obtiene

El lado izquierdo de esta igualdad representa la razón de cambio del momento por unidad de tiempo. De esta manera, el lado derecho representa el momento que pasa a través de la superficie que contiene al volumen V. Así pues el tensor tres-dimensional $T^{\alpha\beta} = -\sigma_{\alpha\beta}$ representa la tensor de flujo de momento, con $\sigma_{\alpha\beta}$ el tensor de esfuerzos.

§21. Cuerpo macroscópico

Tomando en cuenta futuras aplicaciones, calculemos el valor del tensor de energíamomento para un cuerpo macroscópico (gas o fluido) como una nube de gas en el medio interestelar, una estrella, un agujero negro o el universo en su totalidad.

Para el caso de cuerpos macroscópicos, el flujo de momento por unidad de área es igual a la fuerza, es decir, $T^{\alpha\beta}d\alpha_{\beta}$ es la fuerza que actúa sobre el elemento de área $d\alpha_{\beta}$. Para simplificar los cálculos, escojamos el elemento de fluido en cuestión en reposo. En otras palabras, analicemos el comportamiento de este pequeño elemento en su sistema propio de referencia. En este sistema el Principio de Pascal es válido: "la presión que se ejerce sobre una porción del fluido es la misma en todas direcciones y es perpendicular a la superficie que actúa". De esta manera, $T^{\alpha\beta}d\alpha_{\beta} = Pd\alpha_{\alpha} = \delta_{\alpha\beta}Pd\alpha_{\beta}$. La cantidad T^{00} representa la densidad de energía interna propia del sistema e. Como el elemento de fluido se encuentra en reposo en su sistema propio, entonces $T^{0\alpha} = 0$. Así pues, en el sistema propio de referencia el tensor $T^{ik} = \text{diag}[e, p, p, p]$. Utilizando la cuatro-velocidad u^i esta relación puede escribirse como

$$\mathsf{T}^{\mathsf{i}\mathsf{k}} = \omega \mathsf{u}^{\mathsf{i}} \mathsf{u}^{\mathsf{k}} - \mathsf{p} \mathsf{g}^{\mathsf{i}\mathsf{k}}, \tag{21.1}$$

donde $\omega=e+p$ es la entalpia por unidad de volumen. En la ec.(21.1) únicamente aparecen

cuatro-vectores, tensores y escalares y representa una relación entre estos mismos. En otras palabras, esta relación debe ser válida en cualquier sistema de referencia.

Cuando hablamos de hidrodinámica relativista, las cantidades como la entalpía por unidad de volumen e, la presión p, la entropía por unidad de volumen σ y el volumen V son referidos con respecto al sistema propio de referencia. Esto es contrario a lo que se hace en hidrodinámica no-relativista, en donde estas cantidades son medidas con respecto al sistema de referencia del Laboratorio.

§22. Ecuaciones de la hidrodinámica

Consideremos un volumen de tres dimensiones V_0 que se encuentra en reposo en el sistema de referencia inercial del laboratorio (i.e. el sistema de referencia desde donde analizaremos a un fluido que se mueve). El número de partículas de fluido que se encuentran encapsuladas dentro de este volumen está dado por la integral $\int \gamma n dV$ tomada a lo largo de todo el volumen V_0 . Aquí $\gamma = (1 - v^2/c^2)^{-1/2}$ es el factor de Lorentz para cada partícula de fluido que se encuentra dentro del volumen V_0 y que se mueve con velocidad v. La razón por la que en el integrando aparece la cantidad γn (y no n solamente) es porque el volumen (1/n) sufre una contracción de Lorentz al ser visto desde el sistema de referencia del laboratorio. De acuerdo a la fig.(IV.2), el número de partículas por unidad de tiempo que fluye a través del elemento de área da está dado por $\gamma n v \cdot da$. Debido a que el elemento de área apunta hacia afuera de la superficie, entonces la cantidad $\gamma n v \cdot da$ es positiva si el fluido fluye hacia afuera de la superficie y negativa en caso contrario.

De esta manera, el número de partículas total que fluye hacia afuera a través del volumen V_0 por unidad de tiempo está dado por la integral

$$\oint \gamma \mathbf{n} \mathbf{v} \cdot \mathbf{d} \mathbf{a} \tag{22.1}$$

tomada sobre la superficie cerrada S_0 que es frontera de V_0 . Por otra parte, el decremento del número de partículas del volumen V_0 por unidad de tiempo está dado por

$$-\frac{\partial}{\partial t} \int \gamma \operatorname{nd} V. \tag{22.2}$$

Igualando la ec.(22.1) con la ec.(22.2) se obtiene que

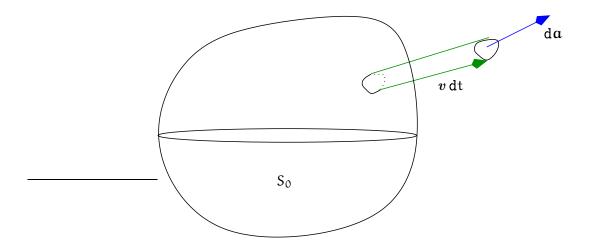


Figura IV.2: La figura muestra el flujo de partículas de un fluido a través de una pequeña superficie d α que es parte del volumen V_0 cuya frontera es S_0 . El flujo de partículas (cantidad de partículas que fluyen a través de un área por unidad de tiempo) que pasa por el pequeño cilindro de altura vdt (velocidad por tiempo) y base d α está dado por $\gamma n v \cdot d\alpha$.

$$\int \frac{\partial (\mathbf{n} \gamma)}{\partial \mathbf{t}} dV = - \oint \mathbf{n} \gamma \mathbf{v} \cdot d\mathbf{a} = - \int \mathrm{div} (\gamma \mathbf{n} \mathbf{v}) dV.$$

Debido a que el volumen V_0 es arbitrario y teniendo en cuenta que la cuatro velocidad está dada por la ec.(14.30) se sigue que

$$\frac{\partial n^k}{\partial x^k} = 0, (22.3)$$

donde $n^k \equiv nu^k$ es el cuatro-vector de flujo de partículas. La ec.(22.3) es la ecuación de continuidad en hidrodinámica y expresa la conservación de masa. Las restantes ecuaciones de la hidrodinámica están contenidas en la ec.(20.6) mediante la sustitución de la ec.(21.1).

Hagamos la proyección de la ec.(20.6) en la dirección de u^i , es decir, tomemos la contracción $u_i \partial T^{ik}/\partial x^k$. Debido a que

$$\frac{\partial T_i^k}{\partial x^k} = u_i \frac{\partial \left(\omega u^k\right)}{\partial x^k} + w u^k \frac{\partial u_i}{\partial x^k} - \frac{\partial p}{\partial x^i} = 0,$$

y como $u^iu_i = 1$ obtenemos para la contracción

$$\frac{\partial(\omega u^k)}{\partial x^k} - u^k \frac{\partial p}{\partial x^k} = 0.$$

Utilizando la igualdad $\omega u^k = nu^k(\omega/n)$ y la ecuación de continuidad ec.(22.3) en la relación anterior se obtiene que

$$nu^{k} \left\{ \frac{\partial}{\partial x^{k}} (\omega/n) - \frac{1}{n} \frac{\partial p}{\partial x^{k}} \right\} = 0$$
 (22.4)

La primera ley de la termodinámica en su forma no-relativista puede escribirse como

$$d\varepsilon = Tds - pdV \tag{22.5}$$

o bien,

$$dw = Tds + Vdp \tag{22.6}$$

donde $w = \epsilon + pV$ es la entalpía especifica (entalpía por unidad de masa) medida en el sistema de referencia del laboratorio, ϵ es la energía interna especifica, s la entropía especifica, V el volumen y s la entropía especifica. La ec.(22.6) puede generalizarse de manera obvia relativisticamente a

$$d(\omega/n) = Td(\sigma/n) + (1/n) dp, \qquad (22.7)$$

siendo σ la entropía por unidad de volumen en el sistema propio de referencia. Así pues, con ayuda de la ec.(22.7), la ec.(22.4) puede escribirse como

$$u^{k} \frac{\partial (\sigma/n)}{\partial x^{k}} = \frac{d (\sigma/n)}{ds} = 0.$$
 (22.8)

En otras palabras, ya que $\sigma/n = \text{const}$ a lo largo de la trayectoria del fluido, se dice que este mismo se mueve de manera $adiab\acute{a}tica^{\dagger}$. A esta clase de fluidos se les denomina también ideales puesto que no existen pérdidas (o ganancias) de energía mediante viscosidad, conductividad térmica y/o radiación.

[†]Cuando σ/n es constante en todo el fluido, decimos que el flujo es *isentrópico*.

Por otra parte, un tensor ortogonal a u^i es $\delta^l_i - u_i u^l$ ya que la contracción de estos dos es nula. Proyectemos la ec.(20.6) en la dirección de este tensor para obtener así

$$\omega u_k \frac{\partial u_i}{\partial x^k} = \frac{\partial p}{\partial x^i} - u_i u^l \frac{\partial p}{\partial x^l}.$$
 (22.9)

Esta es la famosa Ecuación de Euler en su forma cuatro-dimensional.

Tarea 5

- (1) Muestra que la componente temporal de la ecuación de Euler eq.(22.9) se sigue de las componentes espaciales. En otras palabras, la componente temporal está demás siempre y cuando se tengan las otras componentes.
- (II) Demuestra que las componentes espaciales de esta ecuación pueden escribirse como

$$\frac{\gamma^2 \omega}{\mathsf{c}^2} \left\{ \frac{\partial \mathbf{v}}{\partial \mathsf{t}} + \mathbf{v} \cdot \mathbf{grad} \, \mathbf{v} \right\} = -\mathbf{grad} \, \mathsf{p} - \frac{\mathbf{v}}{\mathsf{c}^2} \frac{\partial \mathsf{p}}{\partial \mathsf{t}}, \tag{22.10}$$

Esta es la ecuación de Euler en su forma relativista.

(III) La componente temporal de la ecuación de Euler en su forma cuatro-dimensional para flujo estacionario (flujo para el cual $\partial/\partial t=0$) es $\omega u^{\alpha}\partial u_{0}/\partial x^{\alpha}=-u_{0}u^{\alpha}\partial p/\partial x^{\alpha}$. Si el flujo es también adiabático entonces con ayuda de la primera ley de la termodinámica muestra que la derivada en la dirección de la velocidad se anula

$$\mathbf{v} \cdot \mathbf{grad} (\gamma \mathbf{w} / \mathbf{n}) = 0.$$

En otras palabras, la cantidad

$$\frac{\gamma \omega}{n} = const , \qquad (22.11)$$

a lo largo de una linea de corriente[†]. La ec.(22.11) es la ecuación de Bernoulli en su forma relativista. La constante que aparece en el lado derecho de esta relación varia para distintas lineas de corriente.

[†]Matemáticamente las lineas de corriente se definen como las curvas (x, y, z) para las cuales $dx/v_x = dy/v_y = dz/v_z = dt$. Evidentemente, estas representan la trayectoria recorrida por cada partícula de fluido.

(IV) Muestra que cuando el flujo es adiabático, la ecuación de Euler puede escribirse como

$$u^{k} \frac{\partial}{\partial x^{k}} (\omega u_{k}/n) = \frac{\partial}{\partial x^{i}} (\omega/n). \qquad (22.12)$$

Si el flujo es además estacionario, muestra que la ec.(22.12) puede escribirse como

$$\gamma(\mathbf{v} \cdot \mathbf{grad})(\gamma \omega \mathbf{v}/n) + c^2 \mathbf{grad}(\omega/n) = 0.$$

Demuestra también que la multiplicación escalar de esta ecuación con v implica que a lo largo de cualquier linea de corriente la cantidad en la ec.(22.11) es constante. En otras palabras, con esta multiplicación demuestra la ecuación de Bernoulli.

§23. Hidrodinámica no-relativista

Para derivar las ecuaciones no-relativistas de la hidrodinámica notemos primero la diferencia entre los valores de las cantidades termodinámicas en el caso relativista y el caso no-relativista. Para comenzar, las cantidades en el caso relativista son definidas con respecto al sistema propio de referencia del fluido. En mecánica no-relativista estas cantidades son referidas al sistema de referencia del laboratorio. En el caso relativista las cantidades termodinámicas como la densidad de energía interna e, la densidad de entropía σ, y la densidad de entalpía ω son todas definidas con respecto al volumen propio del fluido. En mecánica no-relativista, estas cantidades están definidas en unidades de la masa del elemento de fluido al que se refieren. Por ejemplo, la energía interna especifica ϵ , la entropía especifica s y la entalpía especifica w son todas medidas por unidad de masa en el sistema de referencia del laboratorio. Adicionalmente, cuando tomamos el límite no-relativista, cuando la velocidad de la luz tiende a infinito, debemos recordar que la densidad de energía interna e incluye a la densidad de energía en reposo nmc2, donde m es la masa en reposo de la partícula de fluido en consideración. También, al obtener el límite es importante notar que el volumen debe sufrir una contracción debida a la contracción de Lorentz. Así pues, los siguientes límites deben tomarse al pasar de mecánica de fluidos relativista a no-relativista

$$\begin{array}{l} \operatorname{mn} \xrightarrow[c \to \infty]{} \rho \sqrt{1 - v^2/c^2} \approx \rho \left(1 - v^2/2c^2\right), \\ e \xrightarrow[c \to \infty]{} \operatorname{nmc}^2 + \rho \varepsilon \approx \rho c^2 - \frac{1}{2}\rho v^2 + \rho \varepsilon, \\ \frac{\omega}{n} \xrightarrow[c \to \infty]{} \operatorname{mc}^2 + \operatorname{m} \left(\varepsilon + \frac{p}{\rho}\right) \approx \operatorname{m} \left(c^2 + w\right), \end{array} \tag{23.1}$$

donde ρ es la densidad de masa del fluido medida en el laboratorio del sistema.

Tarea 6

(1) Utilizando los límites no-relativistas, muestra que la ecuación de continuidad, la ecuación de Euler en su forma tres-dimensional y la ecuación de la conservación de la entropía pueden escribirse como

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0, \tag{23.2}$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \mathbf{grad}) \mathbf{v} = -\frac{1}{\rho} \mathbf{grad} \, \mathbf{p}, \tag{23.3}$$

$$\frac{\partial s}{\partial t} + (v \cdot \mathbf{grad}) s = 0. \tag{23.4}$$

(II) De la misma forma, muestra que la ecuación de Bernoulli puede escribirse en su versión no-relativista como

$$\frac{1}{2}v^2 + w = \text{const.} {(23.5)}$$

¿Qué relación tiene la constante del lado derecho de esta ecuación con la constante que aparece en la ecuación de Bernoulli?

§24. Cosmología Newtoniana

La aplicación mas sencilla que existe utilizando hidrodinámica no-relativista en Astrofísica es hacia el universo mismo. Todo consiste en imaginar al universo como constituido por partículas de fluido que representan las galaxias: "el fluido universal". Distintas

observaciones muestran que el universo a larga escala es homogéneo e isotrópico (cf. sección §4).

Consideremos un origen de coordenadas O amarrado a nuestra galaxia. Otra galaxia con origen de coordenadas O' se mueve con velocidad v(r) con respecto a nuestra galaxia y r es el radio-vector medido con respecto a O. La galaxia en O' se localiza en r=a. De esta manera, la galaxia con origen O' se mueve con el fluido universal con respecto a O. Si un observador en O' ve una galaxia en la posición r' y mide la velocidad de esta misma como v'(r') = v'(r-a), entonces de acuerdo a la ley de adiciones de velocidades de Galileo

$$v'(\mathbf{r}') = v'(\mathbf{r} - \mathbf{a}) = v(\mathbf{r}) - v(\mathbf{a}). \tag{24.1}$$

Debido a la homogeneidad e isotropía del universo, la densidad de masa ρ y la presión p son tales que

$$\begin{split} &\rho'(\mathbf{r}') = \rho'(\mathbf{r} - \mathbf{a}) = \rho(\mathbf{r}), \\ &p'(\mathbf{r}') = p'(\mathbf{r} - \mathbf{a}) = p(\mathbf{r}). \end{split} \tag{24.2}$$

Sin embargo, el principio cosmológico dice que "no vivimos en un lugar privilegiado". En otras palabras, las ecs.(24.1)-(24.2) son validas para cualquier origen O que se tome en el universo. De esta manera, la ec.(24.1) significa que la velocidad debe ser necesariamente una función lineal del radiovector $v(r) = \xi(t)r + \text{const.}$ Debido a que v(r=0) = 0, la constante en esta ecuación debe ser cero. Al hecho de que la velocidad sea proporcional a la distancia se le denomina ley de Hubble. Por comodidad, introduzcamos un sistema de coordenadas amarrado a las galaxias. Estas coordenadas de comovimiento están definidas por

$$\mathbf{r} = \mathbf{R}(\mathbf{t})\mathbf{r}_0,\tag{24.3}$$

donde R(t) es el factor de expansión que está normalizado a una determinada época de tal forma que $R(t_0)=1$ con $r(t_0)=r_0$. Así, la ley de Hubble, ec.(24.1) es tal que

$$v = \frac{\dot{R}}{R}r = f(t)r \qquad ([\dot{}] \equiv (d[]/dt). \qquad (24.4)$$

Dado a que no hay creación espontánea de materia en el universo, entonces la ecuación de continuidad ec.(23.2) es válida. Esta ecuación con ayuda de la ley de Hubble y el hecho de que la densidad $\rho(t)$ solo es función del tiempo t se sigue que $\dot{\rho}/\rho=-3\dot{R}/R$ y por lo tanto

$$\rho R^{-3} = \rho(t_0). \tag{24.5}$$

Por otra parte, la ecuación de Euler, ec.(23.3), cuando la gravedad propia del gas se toma en cuenta puede escribirse como

$$\frac{\partial v}{\partial t} + (v \cdot \mathbf{grad}) v = -\frac{1}{\rho} \mathbf{grad} \, p - \mathbf{grad} \phi, \tag{24.6}$$

donde $g = -grad\phi$ es la aceleración gravitacional y ϕ el potencial gravitacional. Sustituyendo la ley de Hubble ec.(24.4) en la ecuación de Euler ec.(24.6) se obtiene

$$3(\dot{f} + f^2) = -\Delta \phi = -4\pi G\rho, \tag{24.7}$$

donde G es la constante de gravitación universal y la igualdad del lado derecho de la ecuación se obtiene gracias a la ecuación de Poisson ($\Delta \phi \equiv \nabla^2 \phi = 4\pi G \rho$) para el campo gravitacional. De aquí se sigue que el campo gravitacional del universo está dado por

$$g = -\frac{4}{3}\pi G\rho r. \tag{24.8}$$

Sustituyendo el valor de f en la ec.(24.7) y utilizando la ec.(24.5) se obtiene la "ecuación de movimiento del universo"

$$\ddot{R}R^2 = -\frac{4}{3}\pi G\rho(t_0) = -C$$
 (24.9)

donde C es una constante positiva. Debido a que $d/dt = \dot{R}d/dR$, la ec.(24.9) puede integrarse para obtener

$$\frac{1}{2}\dot{R}^2 + \frac{C}{R} = -\frac{1}{2}\kappa. \tag{24.10}$$

El primer término del lado izquierdo en esta ecuación es la energía cinética del universo en expansión. El segundo término es la energía producida por las fuerzas de presión y el término de la derecha es entonces la energía total del sistema. En el capítulo de cosmología veremos que la constante κ representa la *curvatura del universo*. La forma de calcularla es utilizando una teoría relativista de la gravitación. Para analizar la dinámica del universo en expansión analicemos los siguientes casos

- The Curvatura negativa. \Rightarrow Hagamos el cambio $\kappa \to -\kappa > 0$. De esta manera la energía total del universo es positiva y en el límite cuando $R \to \infty$, es decir cuando $t \to \infty$, se obtiene de la ec.(24.10) $R = \sqrt{kt}$, es decir, el universo está abierto y se expande por siempre.
- † Cero curvatura. \rightarrow La solución de la ec.(24.10) con $\kappa=0$ es $R=(9C/2)^{1/3}t^{2/3}$ cuando $t\to\infty$
- $\$ Curvatura positiva. \rightarrow Para este caso la energía total del universo es negativa y R \rightarrow 0 cuando t \rightarrow t_{*} para un cierto tiempo finito t_{*} (ver tarea 7). En otras palabras, el universo se recolapsa después de un determinado tiempo t_{*}.

Tarea 7

- (I) Resuelve la ecuación de movimiento del universo, ec.(24.9) en completo para los casos en los que (a) la curvatura es negativa, (b) la curvatura es cero y (c) la curvatura es positiva. Muestra que en el último caso el universo se recolapsa después de un tiempo finito pasada la "gran explosión". ¿Cuál es el valor de este tiempo?
- (II) Dibuja un diagrama de R vs. t en donde esquemáticamente muestres que sucede para cada uno de los casos del inciso anterior.

Capítulo V

Estrellas

Una estrella es una masa gaseosa suficientemente grande la cual se mantiene estable gracias a poseer un equilibrio de sus fuerzas de presión con las fuerzas gravitacionales que intentan colapsarla hacia un punto. La temperatura en el centro de estos objetos se eleva tanto que se logran formar reacciones termonucleares en su interior. En este capítulo analizaremos las propiedades básicas de las estrellas, su nacimiento, su evolución y su muerte.

§25. Criterio de Jeans

Cada objeto que observamos en el universo hay gracias a que hay un equilibrio entre ciertas fuerzas de la naturaleza que lo mantiene estable. De entre este océano inmenso de estructuras, existen unas las cuales resultan relativamente simples de analizar: las nubes. En astrofísica se define a una nube como un objeto gaseoso (usualmente de unos cuantos parsecs de longitud característica para nubes sumergidas en el medio interestelar) el cual se encuentra en equilibrio de presiones con su medio ambiente ($P_{nube} = P_{medio}$). En términos generales, dadas las dimensiones de estas nubes y a pesar de su baja densidad (la cual llega alcanzar en ocasiones valores extremos de hasta $10^{-3} \, \text{cm}^{-3}$), la gravedad propia de las mismas debe tomarse en consideración. La gravedad producida por cada una de las partículas de gas inducen a la nube a colapsarse gravitacionalmente. No obstante, las fuerzas de presión térmica (i.e. presión generada por la energía cinética de las moléculas de un gas -por ejemplo, la presión atmosférica es un ejemplo de presión térmica) actúan en sentido

112 V ESTRELLAS

inverso a las fuerzas de gravedad. De esta manera podemos definir mas precisamente a una nube en astrofísica como una masa de gas en la cual las fuerzas de presión y las fuerzas gravitacionales son tales que la nube se encuentra en equilibrio mecánico.

Se dice que una nube se encuentra en equilibrio hidrostático cuando el lado izquierdo de la ecuación de Euler (cuando se consideran fuerzas de presión térmica y fuerzas gravitacionales solamente), ec.(24.6), es idénticamente igual a cero. Esto no significa que las partículas de fluido se encuentran en reposo. La única restricción que se obtiene es que dv/dt = 0. Con esto, la ec.(24.6) implica que

$$gradp = -\rho grad\phi, \tag{25.1}$$

en otras palabras, las fuerzas de presión térmica (lado izquierdo de la ec.(25.1)) balancean a las fuerzas de gravedad (lado derecho de la ec.(25.1)).

Analicemos ahora bajo que condiciones este balance entre fuerzas de gravitación y fuerzas de presión térmica es válido. Para esto, utilicemos el hecho de que, dada la simetría esférica de la fuerza de gravitación, la nube debe poseer simetría esférica y por lo tanto la ec.(25.1) puede escribirse como

$$\frac{\mathrm{dp}}{\mathrm{dr}} = G \frac{\rho m(r)}{r^2},\tag{25.2}$$

en donde r es la distancia radial y la masa m(r) evaluada en la posición r está dada por

$$m(r) = \int \rho(r) dV = \int \int \int \int \int r^2 \sin\theta \rho(r) dr d\theta d\phi = \int d\Omega \int \int \rho(r) r^2 dr = 4\pi \int \rho(r) r^2 dr. \quad \text{(25.3)}$$

con Ω el ángulo sólido. Los ángulos polar y azimutal están dados por θ y φ respectivamente.

Para encontrar un criterio lineal que describa el equilibrio que se muestra en la ec.(25.2), aproximemos esta ecuación a orden de magnitud (o lo que es lo mismo, hagamos una aproximación a primer orden de la misma). Para esto, consideremos una longitud característica l, digamos el radio de la nube. De esta manera, $dp/dr \approx p/l$ y $GM/r^2 \approx GM/l^2$, donde $M \approx \rho l^3$ representa la masa total de la nube. Con esto y utilizando el hecho de que $p \approx \rho c^2$, con c la velocidad del sonido, la ec.(25.2) toma la forma

$$l pprox rac{c}{\sqrt{G
ho}} \equiv l_{J}.$$
 (25.4)

Dicho de otra forma, una nube de gas sobre la cual únicamente actúan fuerzas de presión y de gravedad, se encuentra en equilibrio cuando su dimensión es del orden de la longitud de Jeans $l_J \equiv c/\sqrt{G\rho}$. Este criterio de estabilidad se denomina el criterio de estabilidad de Jeans y es uno de los conceptos mas importantes en toda la astrofísica. Tan importante que vale la pena repetir el cálculo de otra manera. Para esto, consideremos nuevamente una nube de longitud característica l. El tiempo de colapso t_{col} , i.e. el tiempo que tardaría la nube en "caer" sobre si misma cuando únicamente la gravedad actúa, está dado aproximadamente por el tiempo que tardaría esta misma en caer libremente desde su superficie. El tiempo de caída libre está dado por el radio de la nube divido por la velocidad de caída libre evaluada a este radio

$$t_{col} \approx \left(\frac{R^3}{GM}\right)^{1/2}.$$
 (25.5)

Por otra parte, el tiempo t_{sc} que una onda de sonido tarda en cruzar la estructura de la nube está dado por el radio de la nube l dividido por la velocidad de sonido c. Este tiempo mide el lapso máximo para que la nube en su totalidad se entere que una perturbación hecha en alguna cantidad hidrodinámica (excepto la entropía y la vorticidad) se llevó acabo en algún lugar de la nube. En otras palabras, el tiempo de cruce del sonido es el tiempo en el cual la presión es capaz de estabilizar a la nube ante cualquier cambio que se requiera. De esta manera, una nube en equilibrio debe satisfacer el hecho de que $t_{col} = t_{sc}$. De aquí se sigue inmediatamente que la longitud l será igual a la longitud de Jeans l_{J} .

Cuando las fuerzas de gravedad son mayores que las fuerzas de presión la nube sufre un colapso gravitacional. Este colapso sucede cuando la ec.(25.2) toma la forma

$$\frac{\mathrm{d}p}{\mathrm{d}r} \lesssim G \frac{\rho \mathrm{m}(r)}{r^2},$$
 (25.6)

y por lo tanto la longitud de la nube l es tal que

$$l \gtrsim l_{\rm J} = \frac{c}{\sqrt{G\rho}}.$$
 (25.7)

114 V ESTRELLAS

Inversamente, si los gradientes de presión son mas grandes que las fuerzas gravitacionales entonces la nube tiende a expandirse. La condición matemática que expresa esto es $l \lesssim l_J$.

Cuando $l \gtrsim l_J$ se obtiene un colapso gravitacional puesto que los gradientes de presión no son suficientes para sostener la intensidad de la fuerza gravitacional. Este es uno de los criterios mas importantes en la astrofísica y se denomina el *criterio de inestabilidad de Jeans*. Se define la *masa de Jeans* $M_J = \rho l_J^3$. De esta manera se dice que una nube de gas es gravitacionalmente inestable si su masa M es mayor a la masa de Jeans M_J .

En el caso de una nube molecular en el medio interestelar, el colapso gravitacional inducido por el criterio de inestabilidad de Jeans induce la formación de estrellas. Esto sucede porque cuando la nube se colapsa entonces su temperatura aumenta tanto hasta que se logran mantener estables procesos de fusión nuclear, y por lo tanto las fuerzas de presión extra que aparecen debido a la liberación de energía nuclear (no lo olvides: presión es energía por unidad de volumen -o lo que es lo mismo, densidad de energía) son capaces de detener el colapso y mantener a la estrella en equilibrio hidrostático. A groso modo, una estrella es un objeto gravitacional compacto (desde una fracción de masa solar hasta no mas de unas cuantas decenas) que se mantiene estable gracias a balance de fuerzas de presión con fuerzas de gravedad y que posee reacciones termonucleares en su interior. Los detalles que siguen después del colapso gravitacional de una nube hasta formar una estrella (o varias -las estrellas casi siempre se observan en parejas, por lo tanto se cree que un colapso gravitacional de una nube molecular induzca la formación de mas de una estrella) no se saben con certeza. Para esto se requiere de computo excesivo que a la fecha ninguna computadora ha sido capaz de realizar de manera satisfactoria. Sin embargo, se espera que cuando se logre producir la inestabilidad de Jeans se produzca por lo menos una estrella.

§26. Energía de amarre gravitacional

A manera de introducción comencemos por calcular la energía que se requiere para ensamblar gravitacionalmente a una distribución de partículas (masas) arbitrarias. Para esto comencemos por preguntarnos la energía (o el trabajo) que se requiere para traer una partícula de masa m desde infinito hasta la posición r cuando existe un campo gravitacional ϕ dado. Este trabajo está dado por

$$W = \mathfrak{m} \int_{\infty}^{\mathbf{r}} \mathbf{g} \cdot d\mathbf{l} = -\mathfrak{m} \int_{\infty}^{\mathbf{r}} \nabla \phi \cdot d\mathbf{l} = -\mathfrak{m} \Big(\phi(\infty) - \phi(\mathbf{r}) \Big) = \mathfrak{m} \phi(\mathbf{r}) = -G\mathfrak{m} \int \frac{\rho' dV'}{|\mathbf{r} - \mathbf{r}'|}.$$
(26.1)

Esta última ecuación representa la energía de amarre que posee una partícula de masa m que se encuentra en un campo gravitacional ϕ^{\dagger} .

Supongamos ahora que tenemos una distribución de partículas en infinito y queremos amarrarlas gravitacionalmente. Para facilitar el cálculo supongamos que ya se tiene a unas cuantas partículas amarradas inicialmente, de tal manera que existe una densidad $\rho(r)$ y un potencial $\phi(r)$ predeterminado por estas masas. Traigamos a una masa infinitesimal δm desde infinito hasta la posición r. El trabajo hecho al realizar este proceso está dado por $\delta m \phi(r)$. De esta manera, debido a que hemos añadido un incremento de densidad $\delta \rho(r)$ a la configuración inicial, el cambio en la energía potencial de la configuración está dado por

$$\delta W = \int \delta \rho(\mathbf{r}) \phi(\mathbf{r}) dV. \tag{26.2}$$

Utilizando la ecuación de Poisson para el campo gravitacional

$$\Delta \phi \equiv \nabla^2 \phi = 4\pi G \rho, \tag{26.3}$$

y el teorema de Gauss, la ec.(26.2) puede ser escrita como

$$\delta W = \frac{1}{4\pi G} \int \phi \nabla^2(\delta \phi) dV = \frac{1}{4\pi G} \left\{ \int \phi \nabla (\delta \phi) \cdot d\alpha - \int \nabla \phi \cdot \nabla (\delta \phi) \right\}. \tag{26.4}$$

La primer integral del lado derecho de la ec.(26.4) se cancela debido a que el campo se desvanece en infinito[‡]. Por otra parte, $\nabla \phi \cdot \nabla (\delta \phi) = \delta |\nabla \phi|^2/2$ y entonces la ec.(26.4) toma la forma

 $^{^{\}dagger}i$ Por qué se le llama energía de amarre? Simplemente porque es la energía necesaria para llevar a la partícula de masa m desde una posición r hasta infinito. Dicho de otro modo, es la energía que mantiene amarrada a la partícula de masa m a la distancia r sobre el campo gravitacional ϕ .

[‡]Para ser exactos, el campo $\phi \propto 1/r$ cuando $r \to \infty$ y en el mismo límite $|\text{grad }\phi| \propto r^{-2}$ y también $|\text{d}a| \propto r^2$. Con esto es evidente la nulidad de la integral en la ec.(26.4).

116 V ESTRELLAS

$$\delta W = -\frac{1}{8\pi G} \delta \left(\int |\nabla \phi|^2 \, dV \right). \tag{26.5}$$

Si ahora sumamos todas las contribuciones a la energía $\int \delta W$, entonces obtenemos la energía de amarre de un objeto que se encuentra atado gravitacionalmente entre sí

$$W = -\frac{1}{8\pi G} \int |\nabla \phi|^2 dV = -\frac{1}{8\pi G} \left\{ \int \phi \nabla \phi \cdot d\alpha - \int \phi \nabla^2 \phi dV \right\} = \frac{1}{2} \int \rho(\mathbf{r}) \phi(\mathbf{r}) dV, \quad (26.6)$$

en donde el penúltimo y último paso de la ec.(26.6) se obtuvieron respectivamente utilizando el teorema de la divergencia y la ecuación de Poisson, ec.(26.3). El valor de la energía de amarre representa la energía mínima necesaria para –por ejemplo– dada una configuración atada gravitacionalmente (e.g. una estrella, una nube, etc.) enviar a cada una de sus partículas hasta infinito, de tal forma que no volverán a recuperar su amarre de ninguna manera[†]

§27. Ecuaciones de estructura estelar

El valor numérico del tiempo de colapso de la ec.(25.5) está dado por

$$t_{col} \approx 27 \left(\frac{R}{R_{\odot}}\right)^{3/2} \left(\frac{M}{M_{\odot}}\right)^{-1/2} min, \qquad (27.1)$$

donde el subíndice \odot se refiere a los valores para el sol. Por ejemplo R_{\odot} es el radio del sol y M_{\odot} es la masa del mismo. Por otra parte, el tiempo t_{K} que se tarda una estrella en agotar toda su energía gravitacional de amarre cuando radia con una luminosidad L se denomina

 $^{^{\}dagger}$ En la película de la guerra de las galaxias se observa la destrucción del planeta Alderan. La energía mínima necesaria para lograr su destrucción total utilizando la estrella de la muerte está dada por la ec.(26.6). A manera de curiosidad, calcula cuanta energía de amarre posee la tierra y calcula cuanta energía (en forma de bombas nucleares) se necesita para convertirla en añicos. Para esto te será útil saber que una bomba nuclear genera energías que varían entre 10 (Hiroshima) a 50 (Tsar, la explosión nuclear mas violenta realizada por la entonces Unión Soviética) megatones. La bomba Tsar, diseñada por los Soviéticos, podía alcanzar ¡hasta 100 megatones!. Esta bomba no fue creada para su uso en guerra, sino para demostrar el poderío de la Unión Soviética al resto de la humanidad (principalmente a los Estados Unidos de América) durante la guerra fría. Se define un megatón (Mt) como la energía explosiva equivalente a la explosión de 10^6 toneladas de TNT (Tri-Nitro-Tolueno) y que se libera al 100% en una sola explosión de manera instantánea. Para ser más precisos $1 \text{ Mt} = 10^5 \text{ cal} = 4.2 \times 10^{15} \text{ J} = 4.2 \text{ PJ}(\text{petajoules}).$

el tiempo de Kelvin y está dado por

$$t_{\rm Kelvin} \approx {GM^2 \over RL} \approx 3 \times 10^7 \left({M \over M_\odot}\right)^2 \left({R \over R_\odot}\right)^{-1} \left({L \over L_\odot}\right)^{-1} {\rm años.}$$
 (27.2)

Para el sol, $t_{col} \ll t_{Kelvin}$ y por lo tanto el sol debe estar muy cerca de un equilibrio hidrostático. Por lo tanto la ec.(25.1) es válida. Para eliminar a ϕ de esta ecuación lo mas simple es tomar el divergente de ambos lados de la igualdad y utilizar la ecuación de Poisson, ec(26.3), para el campo gravitacional. De esta manera se obtiene que

$$\nabla \cdot \left(\frac{1}{\rho} \nabla \mathfrak{p}\right) = -\Delta \phi = -4\pi G \rho. \tag{27.3}$$

Utilizando el hecho de que la simetría es radial, entonces la ec. (27.3) puede escribirse como

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{r^2}{\rho}\frac{\mathrm{d}P}{\mathrm{d}r}\right) = -4\pi G\rho. \tag{27.4}$$

La manera tradicional de obtener la ec.(27.4) (aunque quizás no la mas directa) es como sigue. Consideremos una nube (o estrella) que se encuentra en equilibrio de fuerzas de presión y fuerzas gravitacionales. De esta manera la ec.(25.1) se convierte en la ec.(25.2), donde m(r) (la masa contenida dentro del cascarón con radio r) está dado por la ec.(25.3). La ec.(25.3) puede escribirse como

$$\frac{\mathrm{dm}}{\mathrm{dr}} = 4\pi \mathrm{r}^2 \rho. \tag{27.5}$$

Multiplicando la ec.(25.2) por r^2 , derivando con respecto a r y utilizando la ec.(27.5) se obtiene

$$\frac{\mathrm{d}}{\mathrm{dr}} \left(\frac{\mathrm{r}^2}{\rho} \frac{\mathrm{dp}}{\mathrm{dr}} \right) = -4\pi \mathrm{G} \rho \mathrm{r}^2. \tag{27.6}$$

que es justamente la ec.(27.4).

La ec.(25.2) y la ec.(27.5) son excesivamente importantes para el estudio de la estructura de interiores estelares. Se denominan respectivamente primera y segunda ecuaciones de estructura estelar.

118 V ESTRELLAS

Tarea 8

En lo subsecuente utilizaremos lo que se conoce como un gas politrópico. Se dice que un cambio politrópico en las variables termodinámicas de un gas ocurre si dicho cambio se realiza de manera cuasi-estática y es tal que su calor específico permanece constante durante todo el proceso termodinámico. A partir de esto puede mostrarse que la presión y la densidad de dicho gas están relacionadas mediante

$$p \propto \rho^{\kappa}$$
, (27.7)

donde la constante κ se conoce como el índice politrópico. Como ya sabemos, en el caso de un gas ideal su valor es igual a $\kappa=5/3$ para un gas monoatómico. De hecho en este caso $\kappa=c_V/c_p$, el cociente entre los calores específicos a volumen y presión constante respectivamente. En el caso de un gas isotérmico la ecuación de estado de un gas ideal implica que $p\propto \rho$, es decir el índice politrópico tiene un valor igual a la unidad. Para el caso de un gas de fotones o un gas de partículas relativistas (por ejemplo, electrones relativistas) el valor de este índice es igual a $\kappa=4/3$. La gente que estudia estructuras estelares escribe la ec.(27.7) como

$$p \propto \rho^{1+1/n}, \tag{27.8}$$

y define el índice politrópico como n. Así pues, cuando n=3/2 el gas es un gas monoatómico ideal y cuando n=3, el gas representa un gas de fotones. En nuestro caso utilizaremos siempre la notación como en la ec.(27.7), sin embargo para esta tarea es mas conveniente utilizar la notación de la ec.(27.8).

(1) Muestra que la ec.(27.4) puede ser llevada a la forma

$$\frac{1}{\xi^2} \frac{\mathrm{d}}{\mathrm{d}\xi} \left(\xi^2 \frac{\mathrm{d}\theta}{\mathrm{d}\xi} \right) = -\theta^{\mathrm{n}},\tag{27.9}$$

donde

$$\begin{split} \rho & \equiv \lambda \theta^n, \qquad r \equiv \alpha \xi, \qquad p = k \rho^{1+1/n} \\ \alpha & \equiv \left\{ \frac{\kappa \left(n+1 \right)}{4\pi G} \lambda^{1/n-1} \right\}^{1/2} \end{split}$$

La ec.(27.9) es una de las ecuaciones mas importantes de la estructura estelar y se denomina ecuación de Lane-Emden de orden n y describe la variación de las cantidades hidrodinámicas como función de la posición para una estrella en equilibrio hidrostático.

(II) Las condiciones de frontera usadas en la ec.(27.9) en en el caso de una estrella son $p = \rho = 0$ en r = R, dp/dr = 0 en r = 0 y $\theta = 1$ en r = 0. Cuando $\theta = 0$, es decir, r = R se obtiene que $\xi = \xi_1(n)$, donde la función ξ_1 depende del índice politrópico en cuestión. Muestra que bajo estas circunstancias, el radio y la masa de una estrella están dados respectivamente por

$$R = \alpha \xi_1(n) = \left\{ \frac{(n+1)k}{4\pi G} \right\}^{1/2} \rho_c^{(1-n)/2n} \xi_1(n), \tag{27.10}$$

$$M(\xi = \xi_1) = -4\pi \left\{ \frac{(n+1)k}{4\pi G} \right\}^{3/2} \rho_c^{(3-n)/2n} \left[\xi^2 \frac{d\theta}{d\xi} \right]_{\xi = \xi_1}, \tag{27.11}$$

donde ρ_c es el valor de la densidad en el centro de la estrella y es tal que $\lambda = \rho_c$.

(III) Utilizando las ecs.(27.10)-(27.11) o de alguna otra manera, muestra que al eliminar ρ_c se obtiene

$$M^{n-1} \propto R^{n-3}k^n \tag{27.12}$$

que toma el sencillo aspecto

$$M \propto R^{\frac{n-3}{n-1}}.\tag{27.13}$$

cuando κ es constante. En el caso en que n=3 (presión de radiación) entonces M es constante y R no queda determinada. Sin embargo, cuando n=3/2 (presión de gas) entonces $M \propto R^3$.

(IV) Por otra parte, para una configuración en equilibrio muestra que

$$\frac{\mathrm{d}}{\mathrm{dr}}\left(p + \frac{\mathrm{Gm}^2(r)}{8\pi r^4}\right) < 0. \tag{27.14}$$

De la ec.(27.14) se obtiene que la cantidad $p+Gm^2/8\pi r^4$ alcanza su valor máximo en el centro de la estrella. Por lo tanto

$$p_c > \frac{GM^2}{8\pi R^4} \approx 4.4 \times 10^{13} \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{R}{R_{\odot}}\right)^{-4} \text{ N m}^{-2},$$
 (27.15)

donde $M \equiv m(R)$ es la masa total de la estrella. Dimensionalmente, la presión central está dada por

$$p_c \sim \frac{\text{energía de amarre}}{\text{volumen}} \sim \text{densidad de energía} \sim \frac{GM^2}{R^4}.$$
 (27.16)

Para el sol, el valor de esta presión falla por un factor de alrededor de cien debido a que no se consideró la acumulación central de gas que se encuentra en el centro de las estrellas.

Si suponemos que el sol se comporta como un gas ideal, entonces, la presión del gas p, la temperatura T y la densidad de masa p (o el número de partículas por unidad de volumen p) están relacionadas mediante la ecuación de estado del gas ideal

$$p = \frac{k_B}{\mu m} \rho T = n k_B T = \frac{\mathcal{R}}{\mu} \rho T, \qquad (27.17)$$

en donde \mathcal{R} representa la constante universal de los gases, k_B es la constante de Boltzman, μ es el peso molecular medio y m es la masa promedio de las especies de partículas en el gas.

Utilizando la ec.(27.17) y la ec.(27.16) se puede calcular la temperatura central de una estrella

$$T_{c} \sim \frac{GM^{2}}{R^{4}} \frac{\mu m}{k_{B}\rho} \sim 6 \times 10^{7} \left(\frac{M}{M_{\odot}}\right)^{2} \left(\frac{R}{R_{\odot}}\right)^{-4} \left(\frac{\rho}{\rho_{\odot}}\right)^{-1} \text{ K.}$$
 (27.18)

En el caso de estrellas como el sol (las cuales están dominadas por hidrógeno), debido a que el producto k_BT es mucho mayor que la energía de amarre de un átomo de hidrógeno (13.5 eV) entonces el gas se encuentra totalmente ionizado y por lo tanto $\mu \sim 0.5$.

De la ec.(27.18) y utilizando el hecho de que $\rho \sim MR^{-3}$ se sigue que

$$k_B T_c \sim \frac{GM\mu m}{R}$$
 (27.19)

A este resultado se le conoce como el teorema virial. En el caso de estrellas (o de cualquier

sistema cerrado autogravitante de masas que se encuentra amarrado por fuerzas de cuadrado inversas) sucede que

$$\bar{\mathsf{E}}_{\mathsf{cin}} = -\frac{\bar{\mathsf{E}}_{\mathsf{pot}}}{2},\tag{27.20}$$

en donde \bar{E}_{cin} representa a la energía cinética promedio (en el tiempo) y \bar{E}_{pot} es la energía potencial promedio.

Investiguemos mas con respecto al teorema virial. En el caso de una estrella la energía potencial está dada por la energía gravitacional de la estrella[†]

$$E_{pot} = -4\pi G \int_{0}^{R} \frac{m(r)}{r} \rho r^{2} dr.$$
 (27.22)

Utilizando la ecuación de balance hidrostático, ec.(25.2), e integrando por partes con las condiciones de que la presión p = 0 en r = R se obtiene

$$E_{pot} = 4\pi \int \frac{dp}{dr} r^3 dr = -3 \int_0^R p dV.$$
 (27.23)

Utilizando el hecho de que para un gas ideal la energía cinética está dada por

$$\mathsf{E}_{\mathbf{kin}} = \frac{3}{2} \mathsf{n} \mathsf{k}_{\mathsf{B}} \mathsf{T},\tag{27.24}$$

y la ecuación del gas ideal de la ec.(27.17) se obtiene entonces que

$$\mathsf{E}_{\mathsf{grav}} = -2\mathsf{E}_{\mathsf{cin}}.\tag{27.25}$$

El teorema del virial es un resultado tan importante que vale la pena demostrarlo en su forma general. Tomemos el producto interior de la ecuación de Euler, ec.(24.6), con el

$$W = -G \int \frac{m(r) dm(r)}{r} = -G \int \frac{m(r) \rho(r) dV}{r}.$$
 (27.21)

 $^{^{\}dagger}$ El calculo de la energía potencial de una masa esféricamente simétrica se hace sustituyendo la ec.(6.9) en la ec.(26.6). Estas integrales son un tanto cuanto complicadas, por lo que es mejor hacer el cálculo de manera directa como se hizo para la demostración de la ec.(26.6). Consideremos que se tiene toda la masa de la estrella en infinito y que se va a ensamblar parte por parte a la misma. Supongamos que una cierta masa m(r) dada por la ec.(25.3) ya se tiene en posición. Si ahora se ensambla un anillo de masa dm(r) a la masa original, entonces el trabajo hecho para traer desde infinito a este anillo de ancho dr está dado por -Gm(r) dm(r)/r. Por lo tanto, el trabajo total en ensamblar a una masa esféricamente simétrica desde infinito está dado por

vector posición r e integremos sobre todo el volumen que ocupa el objeto gaseoso para obtener

$$\int \mathbf{r} \cdot \ddot{\mathbf{r}} \rho \, \mathrm{d} V = - \int \mathbf{r} \cdot \nabla \rho \, \mathrm{d} V - \int \rho \mathbf{r} \cdot \nabla \phi \, \mathrm{d} V, \qquad (27.26)$$

donde el punto denota derivada con respecto al tiempo $\dot{[}] \equiv d/dt$. Si ahora utilizamos el hecho de que $d(\mathbf{r}\cdot\dot{\mathbf{r}})/dt = (1/2)d^2(\mathbf{r}\cdot\mathbf{r})/dt^2 = \dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + \mathbf{r}\cdot\ddot{\mathbf{r}}$, entonces la integral del lado izquierdo de la ec.(27.26), con ayuda de la ecuación de continuidad, ec.(23.3), se puede escribir como

$$\int \mathbf{r} \cdot \ddot{\mathbf{r}} \rho \, \mathrm{d} V = -\int \mathbf{r}^2 \rho \mathrm{d} V + \frac{1}{2} \int \frac{\mathrm{d}^2 \mathbf{r}^2}{\mathrm{d} t^2} \rho \mathrm{d} V.$$

$$= \frac{1}{2} \frac{\mathrm{d}^2 \mathbf{I}}{\mathrm{d} t^2} - 2 \mathcal{T}$$
(27.27)

en donde

$$I = \int r^2 \rho dV, \qquad y \qquad \mathscr{T} = \frac{1}{2} \int \dot{r} dV,$$
 (27.28)

representan el momento de inercia y la energía cinética (macroscópica) del sistema respectivamente.

Con ayuda del teorema de Gauss y la identidad $\nabla \cdot (rp) = r \cdot \nabla p + p \nabla \cdot r$ el primer término del lado derecho de la ec.(27.26) puede escribirse como

$$\int \mathbf{r} \cdot \nabla \mathbf{p} \, dV = \oint \mathbf{r} \mathbf{p} d\mathbf{a} - 3 (\kappa - 1) \mathcal{U}, \qquad (27.29)$$

en donde la energía interna del sistema para un gas politrópico está dada por

$$\mathscr{U} = \frac{1}{\kappa - 1} \int p \, \mathrm{d} V. \tag{27.30}$$

Cantidades como la presión y la densidad se toman siempre nulos en la frontera del cuerpo al que se refieren. Por lo tanto, la integral de superficie del lado derecho de la ec. (27.29) se anula.

Finalmente, la segunda integral de la ec.(27.26) se puede llevar al arreglo

$$\int \rho \mathbf{r} \cdot \nabla \Phi \, dV = -G \iint \rho \rho' dV dV' (\mathbf{r} \cdot \nabla) \frac{1}{|\mathbf{r} - \mathbf{r}'|},$$

$$= -G \iint \rho \rho' dV dV' (\mathbf{r}' \cdot \nabla') \frac{1}{|\mathbf{r} - \mathbf{r}'|},$$

$$= -\frac{1}{2}G \iint \rho \rho' dV dV' (\mathbf{r} \cdot \nabla + \mathbf{r}' \cdot \nabla') \frac{1}{|\mathbf{r} - \mathbf{r}'|},$$

$$= -\frac{1}{2}G \iint \frac{\rho \rho' dV dV'}{|\mathbf{r} - \mathbf{r}'|},$$

$$\equiv \mathcal{M},$$
(27.31)

que de acuerdo a la ec.(26.6) representa la energía de amarre del sistema.

Sustituyendo la ec.(27.27), la ec.(27.29) y la ec.(27.31) en la ec.(27.26) se obtiene el teorema virial escalar

$$\frac{1}{2}\frac{\mathrm{d}^2\mathrm{I}}{\mathrm{d}t^2} = 2\mathscr{T} + 3(\kappa - 1)\mathscr{U} + \mathscr{M}.$$
 (27.32)

Tarea 9

En componentes, la ecuación de Euler, ec.(24.7), puede escribirse como

$$\rho \frac{\mathrm{d}v_{\mu}}{\mathrm{d}t} = -\frac{\partial p}{\partial x_{\mu}} - \rho \frac{\partial \phi}{\partial x_{\mu}}.$$
 (27.33)

Multiplicando la ec.(27.33) por x_{ν} e integrando sobre todo el volumen que ocupa la masa de gas se obtiene

$$\int \rho x_{\nu} \frac{\mathrm{d}v_{\mu}}{\mathrm{d}t} \mathrm{d}V = -\int x_{\nu} \frac{\partial p}{\partial x_{\mu}} \mathrm{d}V - \int \rho x_{\nu} \frac{\partial \phi}{\partial x_{\mu}} \mathrm{d}V. \tag{27.34}$$

(I) Muestra que

$$\int \rho x_{\nu} \frac{\mathrm{d}v_{\mu}}{\mathrm{d}t} \mathrm{d}V = \int \rho \frac{\mathrm{d}}{\mathrm{d}t} \left(x_{\nu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} \right) \mathrm{d}V - 2\mathscr{T}_{\mu\nu}, \tag{27.35}$$

en donde el tensor

$$\mathscr{T}_{\mu\nu} = \frac{1}{2} \int \rho v_{\mu} v_{\nu} dV, \qquad (27.36)$$

representa el "tensor" de energía cinética. De hecho la contracción de este tensor da

la energía cinética del sistema

$$\mathscr{T}_{\mu\mu} = \mathscr{T} = \frac{1}{2} \int \rho v^2 dV. \tag{27.37}$$

(II) Con ayuda del teorema de Gauss muestra que

$$-\int x_{\nu} \frac{\partial p}{\partial x_{\mu}} = -\int p x_{\nu} d\alpha_{\mu} + \delta_{\mu\nu} (\kappa - 1) \mathcal{U}, \qquad (27.38)$$

donde la energía interna del sistema está dada por

$$\mathscr{U} = \frac{1}{\kappa - 1} \int p \, \mathrm{d} V, \tag{27.39}$$

para un gas politrópico de índice k.

(III) Demuestra con ayuda de la ec.(6.8) que el tensor

$$\mathcal{M}_{\mu\nu} \equiv -\int \rho x_{\nu} \frac{\partial \Phi}{\partial x_{\mu}} dV = G \int dV dV' \rho(r) \rho(r') \frac{x_{\mu}(x_{\nu} - x_{\nu}')}{|r - r'|^{3}}.$$
 (27.40)

Con esto muestra que el tensor $\mathcal{M}_{\mu\nu}$ es un tensor simétrico. Muestra también que

$$\mathcal{M}_{\mu\nu} = \frac{1}{2}G \int dV dV' \rho(\mathbf{r}) \rho(\mathbf{r}') \frac{(x_{\mu} - x'_{\mu})(x_{\nu} - x'_{\nu})}{|\mathbf{r} - \mathbf{r}'|^{3}}, \qquad (27.41)$$

y como la contracción

$$\mathcal{M} \equiv \mathcal{M}_{\gamma\gamma} = \frac{1}{2} G \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV dV', \qquad (27.42)$$

representa la energía de amarre del sistema, entonces el tensor $\mathcal{M}_{\mu\nu}$ se denomina el "tensor" de energía de amarre del sistema.

(IV) Con todo esto muestra que

$$\int \rho \frac{\mathrm{d}}{\mathrm{d}t} \left(x_{\nu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} \right) \mathrm{d}V = 2\mathscr{T}_{\mu\nu} + \delta_{\mu\nu} (\kappa - 1)\mathscr{U} + \mathscr{M}_{\mu\nu} - \int p x_{\nu} \mathrm{d}a_{\mu}. \tag{27.43}$$

Si suponemos que la presión –y por lo tanto la densidad también– se anula en la superficie que acota al volumen de gas, entonces la integral del lado derecho de la ec.(27.43) se anula.

Así, como el lado derecho de la ecuación contiene tensores simétricos, necesariamente el tensor del lado izquierdo de esta ecuación es simétrico

$$\int \rho \frac{\mathrm{d}}{\mathrm{d}t} \left(x_{\nu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} \right) \mathrm{d}V = \int \rho \frac{\mathrm{d}}{\mathrm{d}t} \left(x_{\mu} \frac{\mathrm{d}x_{\nu}}{\mathrm{d}t} \right) \mathrm{d}V. \tag{27.44}$$

(v) Utilizando la simetría del tensor de la ec.(27.44) muestra que este mismo tensor puede escribirse como

$$\frac{1}{2} \int \rho \frac{\mathrm{d}}{\mathrm{d}t} \left(x_{\nu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} + x_{\mu} \frac{\mathrm{d}x_{\nu}}{\mathrm{d}t} \right) \mathrm{d}V = \frac{1}{2} \frac{\mathrm{d}^{2} I_{\mu\nu}}{\mathrm{d}t^{2}}, \tag{27.45}$$

en donde el tensor de inercia Iuv está dado por

$$I_{\mu\nu} = \int \rho x_{\mu} x_{\nu} dV, \qquad (27.46)$$

y es tal que satisface

$$I = I_{\gamma\gamma} = \int \rho \mathbf{r}^2 dV, \qquad (27.47)$$

en donde I es el momento de inercia.

De la ec.(27.43) y la ec.(27.45) se obtiene el teorema virial en su forma tensorial

$$\frac{1}{2}\frac{\mathrm{d}^2 I_{\mu\nu}}{\mathrm{d}t^2} = 2\mathscr{T}_{\mu\nu} + \delta_{\mu\nu}(\kappa - 1)\mathscr{U} + \mathscr{M}_{\mu\nu}. \tag{27.48}$$

La contracción de la ec.(27.48) produce el teorema del virial escalar

$$\frac{1}{2}\frac{\mathrm{d}^2\mathrm{I}}{\mathrm{d}t^2} = 2\mathscr{T} + 3(\kappa - 1)\mathscr{U} + \mathscr{M}.$$
 (27.49)

(VI) Finalmente, utilizando la ec.(27.44), o de cualquier otra manera, muestra que el momento angular del sistema se conserva, es decir

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \rho \left(x_{\nu} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} - x_{\mu} \frac{\mathrm{d}x_{\nu}}{\mathrm{d}t} \right) \mathrm{d}V = 0. \tag{27.50}$$

§28. Generación de reacciones nucleares

Un colapso gravitacional implica que la energía térmica aumenta pues $T \propto 1/r$ (cf. ec.(27.19)). En el caso de estrellas esto genera una autoregulación de los procesos de energía

termonuclear en regiones donde la presión es dominada por presión térmica. De hecho un colapso eleva la temperatura quien a su vez incrementa la taza de generación de energía termonuclear y por lo tanto la presión térmica (presión es densidad de energía) se eleva de tal manera que se evita un colapso gravitacional.

La energía térmica específica contando los tres grados de libertad disponibles de las partículas está dada por

$$E_{\rm T} = \frac{3 \, k_{\rm B} T}{2 \, \mu m},\tag{28.1}$$

y la energía interna U está dada por

$$U = C_V T, \tag{28.2}$$

donde C_V es el calor específico a volumen constante que está relacionado con el calor específico a presión constante mediante la relación

$$C_{p} - C_{V} = \frac{k_{B}}{\mu m}$$
 y $\kappa = C_{p}/C_{V}$. (28.3)

De esta manera la energía térmica y la interna están relacionadas mediante

$$E_{T} = \frac{3}{2}(\kappa - 1)U = -\frac{1}{2}E_{grav},$$
 (28.4)

de acuerdo al teorema virial para una estrella, ec.(27.25). Por lo tanto, la energía total de una estrella está dada por

$$E_{tot} = U + E_{grav} = -\frac{3\kappa - 4}{3(\kappa - 1)} E_{grav}.$$
 (28.5)

De esta manera, cuando $\kappa > 4/3$ entonces $U > |E_{grav}|$ y por lo tanto no existe un colapso gravitacional. Sin embargo cuando $1 < \kappa < 4/3$ entonces la energía total es negativa y al no haber suficiente presión térmica ($U < |E_{grav}|$) se genera un colapso gravitacional. En los ejemplos previos se ha considerado gases para los cuales $\kappa = 5/3$ y por lo tanto son inestables y continúan colapsándose. Sin embargo, existe otra situación para la cual $\kappa = 4/3$. Esto ocurre cuando la presión está dominada por la radiación de la estrella o bien por presión degenerativa relativista como veremos mas adelante. Estas estrellas resultan

también inestables.

Cuando se origina un colapso gravitacional a partir de una nube de gas difusa la mayor parte de la energía gravitacional es radiada y la presión central y la temperatura se elevan hasta que se da lugar a fusión termonuclear. El elemento mas abundante en el universo ($\sim 70\%$) es hidrógeno y por lo tanto la reacción termonuclear a que se da origen es a la fusión de hidrógeno en helio. Para esto se requiere temperaturas del orden de 10^6 K. A esta temperatura el gas se encuentra altamente ionizado. Para estrellas como el sol, la reacción mas importante es la cadena p-p

$$p + p \longrightarrow D + e^{+} + \nu_{e}$$

$$p + D \longrightarrow He^{3} + \gamma$$

$$He^{3} + He^{3} \longrightarrow He^{4} + 2p,$$
(28.6)

que genera del orden de $26.6\,\mathrm{MeV}$ por cada $\mathrm{He^4}$ formado. Esto equivale a $\sim 0.007\mathrm{mc^2}$, donde m es la masa inicial de los cuatro protones utilizados en la cadena. La taza de cambio de la energía generada es $\epsilon \propto \rho T^4$ (ley de Boltzman para un cuerpo negro) y tiene un valor de $\sim 10^{-4}\,\mathrm{W\,kg^{-1}}$ para el sol.

Reacciones mas energéticas son llevadas acabo, siendo el *ciclo CNO* (Carbón-Nitrógeno-Oxigeno) la mas importante para estrellas masivas. En este caso la taza de cambio de la energía específica generada está dada por $\epsilon_{\rm CNO} \propto \rho T^{15}$.

La conservación de la energía generada en el interior de una estrella debida a sus reacciones nucleares puede escribirse como

$$L = \int \rho \epsilon dV = 4\pi \int \rho \epsilon r^2 dr,$$

en donde L es la luminosidad y ϵ es la energía específica (energía por unidad de masa) por unidad de tiempo que se genera dentro de la estrella. Esta última ecuación es comúnmente escrita en forma diferencial y representa la tercera ecuación de estructura estelar

$$\frac{dL}{dr} = 4\pi r^2 \rho \epsilon. \tag{28.7}$$

La energía generada en el interior del sol escapa del mismo debido a radiación cerca del

núcleo y a convección en las partes mas externas.

La cuarta y última ecuación de estructura estelar tiene que ver con el transporte de energía del centro hacia la superficie de la estrella. Esto corresponde a transportar energía por conducción, convección y/o radiación de las partes centrales de una estrella hacia su exterior. De estas formas de transporte energético, la conducción y la radiación no son muy diferentes. La conducción, llevada acabo principalmente por electrones, consiste en que electrones con energías elevadas provenientes de regiones calientes colisionen con electrones de energías bajas que se encuentran en regiones frías, transmitiendo de esta manera energía y elevando así la temperatura. En el caso de la radiación, son los fotones los que se encargan de energetizar (calentar) las partes menos energéticas (frías) de la estrella.

El contenido energético y el camino libre medio (i.e. la distancia promedio que recorre una partícula entre dos colisiones sucesivas) de los electrones y/o los fotones son los factores que determinan la eficiencia del transporte energético. La energía térmica de los electrones (= $(3/2)nk_BT$) es mucho mayor que la energía térmica de los fotones (= aT^4)[†]. Por otra parte, si el camino libre medio es grande, entonces las partículas (electrones o fotones) pueden recorrer grandes distancias, partiendo desde regiones en donde la temperatura es elevada, hasta los lugares en los cuales la temperatura es baja y de esta manera transferir su energía eficientemente. A pesar de que ni los electrones ni los fotones tienen caminos libres medios grandes para el caso de estrellas, el camino libre medio de los fotones es considerablemente mayor al de los electrones. Por esta razón es necesario discutir los mecanismos de conducción y radiación para ambas especies, electrones y fotones.

A diferencia de la radiación y la conducción, que son producidas por gradientes de temperatura, las corrientes convectivas en un fluido se generan solamente cuando los gradientes

$$e = aT^4, (28.8)$$

en donde

$$a = \frac{4\sigma}{c} = 7.55 \times 10^{-16} \,\mathrm{J}\,\mathrm{m}^{-3}\,\mathrm{K},$$
 (28.9)

es la constante de densidad de radiación y la constante de Stephan-Boltzman σ tiene el valor

$$\sigma = \frac{\pi^2 k_B}{60 h^3 c^2} = 5.6 \times 10^8 \text{ kg s}^{-3} \text{ K}^{-4}. \tag{28.10}$$

 $^{^{\}dagger}$ Recuerda que para un cuerpo negro la densidad de energía radiada e (energía por unidad de volumen) está dada por la ley de Boltzman

de temperatura alcanzan un cierto valor. Dicho de otro modo, la convección comienza debido a que el estado del fluido sin movimiento resulta ser inestable. No es difícil calcular cuando la convección ocurre en un fluido. Lo difícil es saber cuanta energía es transportada mediante convección en el caso de una estrella. No se tienen ni experimentos de laboratorio ni teorías precisas que describan a la convección estelar. De hecho, la ausencia de una teoría buena de la convección es uno de los peores defectos en los estudios actuales de la estructura estelar y su evolución. Es por esta razón que la convección se omite generalmente cuando uno realiza estudios de transporte de energía para el caso de estrellas.

Ya sea que se considere transporte de energía por conducción o radiación, el flujo de energía F (energía por unidad de área por unidad de tiempo) puede expresarse como gradientes de temperatura T en cada caso respectivamente como

$$\begin{split} F_{cond} &= -\lambda_{cond} \frac{dT}{dr}, \\ F_{rad} &= -\lambda_{rad} \frac{dT}{dr}, \end{split} \tag{28.11}$$

donde $\lambda_{\rm cond}$ y $\lambda_{\rm rad}$ son factores positivos de proporcionalidad denominados coeficientes de conductividad y radiación térmica respectivamente. El signo menos en el lado derecho de la ec.(28.11) significa que el flujo se transporta de las regiones con temperatura altas a las regiones con temperaturas bajas. Los factores de proporcionalidad de estas ecuaciones están determinados por

$$\kappa = \frac{4acT^3}{3\rho\lambda},\tag{28.12}$$

en donde κ representa la *opacidad* del material estelar. La opacidad mide la resistencia de un material (en este caso el gas de la estrella) al flujo de calor. De aquí puede mostrarse que la probabilidad de que un fotón sea absorbido al recorrer una distancia δx esté dada por $\kappa \rho \delta x$.

Utilizando la ec.(6.1) entonces el transporte que se lleva acabo por radiación y conducción, como se muestra en la ec.(28.11), puede escribirse como energía transportada por unidad de tiempo L (la luminosidad) de la siguiente forma

$$L = 4\pi r^{2} (F_{cond} + F_{rad}) = -\frac{16\pi a c r^{2} T^{3}}{3\kappa \rho} \frac{dT}{dr},$$
 (28.13)

en donde

$$\frac{1}{\kappa} \equiv \frac{1}{\kappa_{\text{rad}}} + \frac{1}{\kappa_{\text{cond}}}.$$
 (28.14)

La ec.(28.13) es la cuarta ecuación de estructura y se denomina ecuación de transporte energético. Utilizando el hecho de que la presión de radiación p_{rad} para un cuerpo negro está dada por

$$p_{\rm rad} = \frac{a}{3} T^4, \tag{28.15}$$

entonces la ec.(28.14) puede reescribirse como

$$\frac{\mathrm{d}p_{\mathrm{rad}}}{\mathrm{dr}} = -\frac{\kappa_{\mathrm{B}} \mathrm{L}\rho}{4\pi \mathrm{cr}^2},\tag{28.16}$$

que tiene una forma semejante a la ec.(25.2).

§29. Modelos estelares

Para hacer un modelo estelar, las cuatro ecuaciones de estructura estelar tienen que ser resueltas en conjunto con una ecuación para el coeficiente de absorción κ . Estas ecuaciones llevan además condiciones a la frontera (superficie) y los valores de las masas se obtienen de observaciones astronómicas. En la gran mayoría de los casos esto requiere cálculos numéricos. Sin embargo, es posible obtener ciertas relaciones de escala como funciones de M, R o L. Por ejemplo, utilizando la ec.(28.14) y la ec.(28.4) se obtiene respectivamente

$$\frac{L}{R^2} \propto \frac{T^4}{\kappa \rho R},\tag{29.1}$$

$$T \propto \frac{M}{R}$$
, (29.2)

$$\rho \propto \frac{M}{R^3}. \tag{29.3}$$

De estas relaciones se observa en particular que la luminosidad es proporcional al cubo de la masa. Esta relación se denomina la relación de masa-luminosidad. En el caso de estrellas masivas, la dispersión por electrones domina la difusión radiativa y entonces el coeficiente de absorción κ es una constante. De esta manera, la presión térmica domina sobre la presión radiativa. En este caso $L = \varepsilon M$, con $\varepsilon \propto \rho T^n$. De la ec.(29.1) y la ec.(29.2) se obtiene que $L \propto M^3$.

Mas o menos 12% de la masa de una estrella se quema con el proceso de fusión $H \to He$. Para el caso del sol esto equivale a un tiempo de vida medio de 10^{10} años y se puede mostrar que este valor escala como el reciproco de la masa cuadrada de la estrella.

Cuando el hidrógeno en el núcleo de una estrella se agota, entonces este mismo se contrae para elevar la temperatura de tal manera que se pueda entonces quemar helio. La envolvente externa de la estrella entonces se agranda por un factor de 100 o mas. No hay una descripción simple del porque esto ocurre. Estos cálculos se hacen de manera computacional y representan bastante bien el comportamiento que describen las estrellas de manera observacional, en el cual la envolvente de la estrella se expande de manera excesiva. Cuando esto sucede la estrella se encuentra en su etapa de gigante roja (gigante porque es mucho mas grande que la estrella original y roja porque radia en el rojo del espectro óptico). Esta etapa de la estrella es de mucho menor duración que la etapa del quemado de hidrógeno debido a la elevada temperatura del núcleo estelar.

Finalmente mostremos que la presión de radiación ($\sim aT^4$) -cf. eq.(28.15)- es mucho mas importante que la presión de gas ($\sim nk_BT$) para estrellas de masa elevada. Para esto basta utilizar las ecs.(29.1)-(29.3), así como la ley del gas ideal, ec.(27.17), y así obtener

$$p_{gas} \sim nk_B T \sim \frac{GM^2}{R^4}, \qquad p_{rad} \sim aT^4 \sim \frac{aG^4M^4 (\mu m)^4}{R^4k_B^4}.$$
 (29.4)

De esta manera, cuando $p_{rad} > p_{gas}$ entonces se tiene que

$$M \gtrsim \frac{k_{\rm B}^2}{a^{1/2} (\mu {\rm m})^2 G^{1/3}} \sim 6 M_{\odot}.$$

Las estrellas que están soportadas por presión de radiación tienen un índice politrópico $\kappa \sim 4/3$ y por lo tanto son propicias a un colapso o a una expansión, dependiendo de las condiciones iniciales de su estructura, así como de las condiciones energéticas de la misma.

Con esto y utilizando el límite de Eddington mencionado mas abajo es posible poner una cota superior de $\lesssim 100 M_{\odot}$ a la masa de las estrellas. Estrellas de masa mas elevada, no pueden existir en la naturaleza.

§30. Presión degenerativa

El límite inferior a la masa de una estrella está dado por presión degenerativa, una presión que sucede por efectos cuánticos cuando la densidad se incrementa. Para ser exactos, la presión degenerativa se da debido a la compresión de fermiones (partículas con spin múltiplos de 1/2 como por ejemplo protones, electrones, neutrones) y que obedecen el principio de exclusión de Pauli, el cual dice que solamente dos fermiones pueden encontrarse en un mismo nivel de energía con spins de signos opuestos. Cuando la materia se comprime, el punto cero o punto de Fermi se eleva y esto genera una presión adicional (presión es energía por unidad de volumen).

Una forma aproximada para describir a la presión degenerativa se obtiene con ayuda del principio de incertidumbre de Heissemberg de la mecánica cuántica

$$\Delta p \Delta x \approx \hbar,$$
 (30.1)

en donde \hbar es la constante de Planck entre 2π , p es el momento y κ la posición de una partícula (e.g. un electrón). El nivel cero de energía no-relativista por partícula está dado por

$$\mathsf{E}_{\mathsf{deg}} = \frac{\mathsf{p}^2}{2\mathsf{m}} \approx \frac{\mathsf{h}^2}{2\mathsf{m}\Delta \mathsf{x}^2},\tag{30.2}$$

en donde el último paso se obtiene del principio de incertidumbre de Heissemberg. De la ec.(30.2) se ve que la energía disponible por partícula se incrementa a medida que el tamaño disponible por partícula (Δx) decrece. La presión p_{deg} (presión degenerativa) que esta energía origina (presión es energía sobre volumen) para el caso de N partículas en un volumen V está dado por

$$p_{\text{deg}} \approx \frac{N}{2m} \frac{p^2}{2m} \approx \frac{\hbar^2}{2m} n^{5/3}, \tag{30.3}$$

en donde n=N/V es el número de partículas por unidad de volumen y $\Delta x \approx (V/N)^{1/3} = (1/n)^{1/3}$. De la ec.(30.3) se ve que $p_{\text{deg}} \propto n^{5/3}$ y por lo tanto la presión degenerativa norelativista se comporta como un gas politrópico cuyo índice $\kappa=5/3$. Además esta presión es inversamente proporcional a m. De esta manera se ve que la presión degenerativa de electrones es 2000 veces mas fuerte que la presión degenerativa de protones. Por esta razón generalmente se habla de presión degenerativa debida a electrones.

En el caso de que las partículas se estén moviendo en forma relativista, la energía degenerativa está dada por

$$\mathsf{E}_{\mathsf{deg},\mathsf{rel}} pprox \mathsf{pc} = rac{\hbar \mathsf{c}}{\Delta \mathsf{x}}.$$
 (30.4)

De esta manera, la presión degenerativa para el caso relativista está dada por

$$P_{\text{deg,rel}} \approx \hbar \text{cn}^{4/3},$$
 (30.5)

que es una relación politrópica de índice $\kappa = 4/3$. Por lo tanto, de acuerdo con la ec.(28.5), la estrella está propicia a un colapso gravitacional.

Utilizando el concepto de presión degenerativa, es fácil poner una cota inferior a la masa que debe tener una estrella que quema hidrógeno (como el sol). Para esto, basta con utilizar la primera ecuación de la ec.(27.18). De esta igualdad se sigue que para que se lleve a cabo la cadena p-p se requiere que $T_c \gtrsim 10^7\,\mathrm{K}$. Cuando una nube se colapsa, esta temperatura se alcanza solamente si la presión térmica $p_{gas} = nk_BT_c$ es mayor a la presión degenerativa $p_{deg} = \hbar^2 n^{5/3}/2m_e$, donde m_e es la masa del electrón. Por otra parte, para un sistema virializado, la energía térmica es aproximadamente igual a la energía potencial y por lo tanto $T_c \approx GMm_e/Rk_B \gtrsim 10^7\,\mathrm{K}$. De aquí se obtiene que la masa mínima que puede tener una estrella la cual quema hidrógeno en su centro es $\sim 0.05 M_{\odot}$.

Objetos colapsados que tienen masas inferiores a este valor, digamos $0.03\,M_\odot$, soportan su propia masa mediante presión degenerativa y por lo tanto no llegan a quemar su combustible mediante fisión termonuclear. Objetos demasiado pequeños, tipo Júpiter que tienen una masa $\sim 0.001\,M_\odot$ están soportados por una combinación de presión degenerativa con fuerzas electrostáticas. Esto se debe a que el principio de Pauli y el principio de incertidumbre de la mecánica cuántica se tienen que aplicar para átomos individuales.

Con esto y lo mencionado antes queda mostrado el resultado importante de que las

estrellas que brillan debido a la producción propia de fusión nuclear tienen masas entre $0.05~y~100~M_{\odot}$. Estos valores constituyen cotas mínimas y máximas respectivamente a la masa de una estrella.

§31. Enanas blancas

Objetos colapsados que soportan la gravedad producida por sus masas mediante presión degenerativa se denominan *enanas blancas*. Para estos objetos, la energía total está dada por

$$E = NE_{deg} + E_{grav} = \frac{N^{5/3}\hbar^2}{2m_e V^{2/3}} - G\frac{M^2}{R},$$
 (31.1)

para el caso no-relativista. Ahora bien, como $N=M/(m_e+m_p)\approx M/m_p$ y $V\sim R^3$, entonces la ec.(31.1) puede escribirse como

$$E = \frac{\hbar^2 M^{5/3}}{2m_e m_p^{5/3} R^2} - G \frac{M^2}{R}.$$
 (31.2)

Pero un sistema mecánico se encuentra en equilibrio si su energía total alcanza un mínimo. De aquí que para que la estrella esté en equilibrio necesariamente se obtiene de la ec.(31.2) la siguiente relación entre la masa de la enana y su radio

$$M \approx \left(\frac{\hbar^6}{m_e^3 G^3 m_p^5}\right) \frac{1}{R^3}.$$
 (31.3)

Esta relación implica que el radio decrece al aumentar la masa de la enana. Esto se debe al principio de incertidumbre, pues el espacio disponible para los electrones debe de reducirse para que su momento (y por tanto su energía por unidad de volumen o presión) se incremente.

En el caso de electrones relativistas, la energía total está dada por

$$E = \hbar c \left(\frac{M}{m_p}\right)^{4/3} \frac{1}{R} - G \frac{M^2}{R}.$$
 (31.4)

En este caso los dos términos del lado derecho de la ec.(31.4) son inversamente proporcionales al radio de la enana y por lo tanto no existe un mínimo de energía. De esta

manera, la enana es propicia a colapsarse o expandirse a infinito. La masa a la cual esto ocurre está dada por la condición sobre la cual E=0 que corresponde a la masa máxima posible para la cual $E\leq 0$. Esta masa, la masa de Chandrasekhar[†] está dada por

$$M_{\rm Ch} = \left(\frac{\hbar c}{G}\right)^{3/2} \frac{1}{m_{\rm p}^2} \approx 2 \,\mathrm{M}_\odot. \tag{31.5}$$

El valor exacto de la masa de Chandrasekhar depende de la composición de la enana. Resulta que el punto cero de la energía de los iones de una enana blanca fría y masiva es suficiente para que se pueda producir fusión nuclear, de hecho fusión piconuclear, y el equilibrio es proporcionado por una mezcla de carbono y oxigeno. De aquí puede mostrarse que

$$M_{\rm Ch} \approx 1.4 \, \rm M_{\odot}.$$
 (31.6)

El camino libre de un electrón en la materia degenerativa es grande. Lo mismo ocurre en metales debido a la misma razón pues los niveles de Fermi se encuentran llenos. Por esta razón la conducción de calor es sumamente eficiente. En la superficie de las enanas blancas se produce una capa de materia no-degenerativa que actúa como una sábana, evitando que el calor de la estrella escape. Por esta razón estas estrellas tardan alrededor de $\sim 10^{10}$ años en enfriarse (radiar toda su energía). Debido a esto, estas estrellas son observadas como estrellas calientes de color blanco. El radio de estas estrellas es del orden del radio de la tierra $R_{\rm d}=6.3\times 10^6\,{\rm m}$.

Sirius A es la estrella mas brillante en el cielo nocturno. La órbita de esta estrella es perturbada debido a la existencia de una compañera llamada Sirius B. La existencia de Sirius B se infirió debido al movimiento ondulatorio que se observó en la órbita de Sirius A en la década de los años 1830's. Sirius B fue observada directamente en el año 1865. Estas dos estrellas forman un sistema binario con un periodo orbital de 49.9 años y los semiejes mayores α_1 y α_2 de Sirius A y Sirius B obedecen la siguiente relación $2\alpha_1 \approx \alpha_2$. Desde el centro de masa del sistema, la ley de Kepler de gravitación puede escribirse como (cf.

[†]El astrofísico Indio S. Chandrasekhar (el famoso Chandra) fascinado por la mecánica cuántica y la astrofísica fue aceptado para realizar sus estudios de posgrado en la Universidad de Cambridge del Reino Unido a la edad de 19 años. En su viaje en barco, que duró aproximadamente tres semanas, encontró esta masa límite, la masa de Chandrasekhar.

ec.(6.5))

$$G\mu (M_1 + M_2) \pi^2 = 4\pi a^3 \mu, \tag{31.7}$$

donde $\mu=M_1M_2/(M_1+M_2)$ es la masa reducida, $M_{1,2}$ son las masas de Sirius A y Sirius B respectivamente y $a=a_1+a_2$. Con esto y utilizando el hecho de que $M_1\approx 2M_\odot$ entonces se obtiene que $M_2\approx 1M_\odot$. Ambas estrellas son de color blanco muy similar. Por lo tanto la temperatura de su superficie debe ser similar: $T_{\text{sup}}\approx 10^4$ K, pero sus luminosidades difieren por un factor de $\sim 10^4$. De aquí que como el flujo total de radiación de un cuerpo negro $F=\sigma T^4$, entonces

$$L = 4\pi R^2 \sigma T^4. \tag{31.8}$$

Por lo tanto $R_2\sim R_1/100$ y así $\rho_2\sim 10^6$ kg m⁻³, con lo cual se infiere que Sirius B es una enana blanca.

Las enanas blancas producen un corrimiento al rojo gravitacional $z\sim 10^{-4}$ que fue detectado en la década de los 1960's mediante observaciones espectroscópicas. Las líneas de He no se observan en el espectro de las enanas blancas debido a que el He es mas denso que el H y por lo tanto, se hunde en la estrella debido al fuerte potencial gravitacional. Las enanas blancas son estrellas comunes en nuestra galaxia casi siempre se les observa en sistemas binarios (para ser precisos, sistemas binarios compactos y lejanos, es decir estrellas binarias no muy cercanas entre sí -como la de Sirio). El sol se convertirá en una enana blanca en unos cinco mil millones de años aproximadamente.

§32. Estrellas de neutrones

Cuando la energía degenerativa de un electrón excede la diferencia de masa-energía entre el neutrón y el protón, i.e.

$$E_{deg} > (m_n - m_p) c^2 = 1.29 \text{ MeV},$$
 (32.1)

los electrones se mueven a velocidades moderadamente relativistas y entonces se produce el decaimiento inverso- β que está dado por

$$e^- + p \rightarrow n + \nu. \tag{32.2}$$

La densidad a la que este decaimiento ocurre es del orden de $10^{10} \, \mathrm{kg} \, \mathrm{m}^{-3}$. Cuando las densidades son aún mas grandes, entonces la materia está compuesta de neutrones en su mayoría. Los electrones y los iones se encargan de llenar todos los estados libres de la materia y de esta manera mantienen a la misma eléctricamente neutra. Debido a la abundancia de neutrones, la presión degenerativa debida a neutrones domina a la de los electrones.

Es posible hacer un cálculo aproximado del radio que debe de tener un objeto gravitacional soportado por presión degenerativa producida por neutrones. Para esto, basta con utilizar la ec.(31.3) y en el caso de neutrones para obtener

$$M \propto \frac{1}{\left(m_{\text{deg}}R\right)^3}.$$

Suponiendo que la masa M es la masa del sol M_{\odot} , entonces se obtiene una relación entre los radios R_{eb} y R_{en} para una enana blanca y una estrella de neutrones respectivamente

$$R_{en} \approx R_{eb} \left(\frac{m_e}{m_p} \right) \approx 10 \, km.$$
 (32.3)

Con lo pequeño de este radio se obtiene que la separación entre las distintas partículas está dado por $\Delta x \approx (N/V)^{1/3} \approx (\rho/m_p) \approx 10^{-15}\,\mathrm{m}$, que es la distancia típica en la cual actúa la fuerza nuclear fuerte (i.e. la longitud de onda de Compton del protón). En otras palabras, las partículas están tan cercanas unas de las otras que los núcleos se "tocan" entre sí. Por esta razón la densidad de materia en una estrella de neutrones es comparable con la densidad nuclear. El problema surge debido a que la ecuación de estado para materia densa, digamos dos veces la densidad nuclear, no se conoce experimentalmente. Por lo tanto no resulta muy clara la estructura precisa de las estrellas de neutrones. Por si fuera poco, para ser precisos, el análisis de una estrella de neutrones requiere una teoría relativista de la gravedad pues sucede que para estos objetos, la energía potencial gravitacional GM^2/R es mayor a un diez por ciento de su energía en reposo, es decir, $0.1Mc^2$.

Se puede mostrar que la masa mínima que una estrella de neutrones puede tener es $\sim 0.1 M_{\odot}$. Por debajo de esta masa los neutrones son inestables al decaimiento- β con lo

cual el radio se incrementa al disminuir la masa. Existe además un límite superior a la masa de una estrella de neutrones que resulta ser ($\sim 3M_{\odot}$).

§33. Supernovas

Cuando una estrella masiva ($\gtrsim 8\,\mathrm{M}_\odot$) alcanza el final de sus vida, su núcleo se colapsa y en ocasiones forma una estrella de neutrones. Cuando las estrellas son tan masivas como esta, las reacciones nucleares son tan intensas que llegan a producir hierro en sus núcleos. Más aya de esta reacción termonuclear, la fisión nuclear que se produce es endotérmica, es decir, requiere energía para mantenerse, contrario a una reacción termonuclear normal, la cual genera energía. El resultado es que el núcleo de hierro que se produce y que está soportado por presión degenerativa se colapsa. Los rayos gama que se producen debido a la liberación enorme de energía gravitacional causan entonces fotodisociación del núcleo del hierro hasta romperlo por completo y regresarlo a protones y neutrones libres.

En el núcleo se producen entonces temperaturas muy elevadas y una fracción de la energía gravitacional se libera mediante neutrinos. Esto hace que el colapso del núcleo ocurra mas lentamente, cambiando del tiempo de caída libre a unos cuantos segundos. Esto se debe a que cuando la densidad es excesivamente alta ($\sim 10^{14}\,\mathrm{kg\,m^{-3}}$), los neutrinos dispersan a la materia. Cuando el núcleo alcanza densidades nucleares entonces el núcleo "rebota" y la materia que está arriba del mismo es lanzada a velocidades del orden de $10^4\,\mathrm{km\,s^{-1}}$. La rápida liberación de energía y su recombinación subsecuente origina un destello altamente luminoso que llega a tener una luminosidad en el óptico $\sim 10^9\,\mathrm{L}_\odot$. A este fenómeno se le denomina supernova (tipo II) en astrofísica. La luminosidad decae rápidamente en los meses subsecuentes debido a que los elementos lanzados por la supernova decaen. Principalmente se observa el decaimiento de especies radioactivas como $\mathrm{Ni^{56}} \to \mathrm{Co^{56}} \to \mathrm{Fe^{56}}$. Los núcleos de estas supernovas dejan una estrella de neutrones o un agujero negro en el lugar de la explosión. El agujero negro se observa cuando la masa de la estrella progenitora es $\sim 30\mathrm{M}_\odot$.

La mayor perdida de energía debida a la implosión y la explosión de la estrella se debe a la difusión de neutrinos a través del núcleo. El tiempo de difusión que tardan los neutrinos en atravesar el núcleo es $t_{\rm dif} \sim 10\,{\rm s}$ y por lo tanto la luminosidad $L_{\rm v}$ producida debida a la expulsión de neutrinos está dada por el cociente de la energía de amarre de la estrella de

neutrones entre el tiempo de difusión que resulta ser $L_{\nu} \approx 10^{45} \, \mathrm{W}$.

La explosión produce grandes flujos de neutrones debido a la nucleosíntesis que se produce gracias a las elevadas temperaturas y densidades en el núcleo. Estos neutrones pasan entre las regiones que cubren al núcleo y se recombinan para formar elementos mas pesados que el hierro gracias a una captura rápida del neutrón. Estos nuevos elementos se amarran mas rápido de lo que tarda el decaimiento- β (proceso inverso al decaimiento inverso- β). Esta nucleosíntesis en una supernova es el proceso mediante el cual se forman la mayoría de los elementos mas pesados que el He. De hecho, los elementos pesados que observas a tu alrededor aquí en la tierra fueron creados en una supernova. Gracias a la explosión de alguna estrella en el remoto pasado de nuestra vecindad galáctica, se pudieron formar diversos elementos pesados. Más tarde un colapso gravitacional de una nube contaminada con estos elementos pesados logró la formación del sol y nuestro sistema solar.

Existe otra forma de producir una supernova (tipo I). Esta se debe a que cuando una enana blanca acreta† demasiada masa, entonces llega un momento en el cual la masa de la estrella alcanza (o rebasa) el límite de Chandrasekhar. Este tipo de situación ocurre en algunos sistemas binarios, en los cuales una estrella (por ser mas compacta y mas masiva) acreta gas de su compañera. Debido a esta situación se produce una implosión/explosión semejante a la mencionada anteriormente, pero la diferencia es que no se produce un objeto compacto como vestigio del proceso físico. Por lo tanto, todo el hierro que se forma durante la explosión es lanzado al espacio. Estas supernovas de tipo I se diferencian de las supernovas tipo II debido a que en su emisión no existen líneas de hidrógeno en el espectro que producen.

Las observaciones de supernova son difíciles, sin embargo hoy en día lo que se trata de hacer es observar supernovas en otras galaxias, con lo cual es posible determinar de manera muy precisa la geometría del universo como veremos mas adelante. En nuestra galaxia se conocen los remanentes (vestigios) de supernova de cinco supernovas que ocurrieron en los últimos 1000 años. La predicción es que deba ocurrir una supernova en nuestra galaxia mas o menos cada 30 años. La gran mayoría de estas supernovas no son visibles debido a que son oscurecidos por el gas del plano de la galaxia. Una de las supernovas mas famosas

 $^{^{\}dagger}$ En astrofísica se denomina acreción al fenómeno de atracción gravitacional de gas hacia un objeto condensado —en ocasiones compacto— como una estrella o agujero negro.

fue la supernova del año 1054 D.C. El remanente se conoce hoy en día como la nebulosa del cangrejo y posee un pulsar (estrella de neutrones) en su interior. Históricamente esta supernova ha sido una de las observaciones mas importantes en la historia del hombre. Los Chinos dejaron por escrito el hecho de la gran brillantez que se presentó en el cielo debido a la supernova. Culturas del norte de México y el sur de los Estados Unidos de América realizaron diversos murales de pintura en cavernas dejando marca de la existencia de este fenómeno anormal en el cielo. Finalmente y de gran importancia para Mesoamérica, los Teotihuacanos en México dejaron también un petroglifo que ha sido recientemente identificado como la confirmación de que una explosión supernova en el año 1054 D.C. ocurrió. Este petroglifo se muestra en la fig.(V.1).

Figura V.1: La figura muestra una fotografía de un petroglífo teotihuacano que describe la presencia de una supernova en el firmamento (lado izquierdo de la imagen). Esta supernova corresponde a la supernova del año 1054 que fue observada también por los Chinos y tribus del norte de México y sur de los Estados Unidos de América. El remanente de supernova se denomina hoy en día como la nebulosa del cangrejo (cf. fig.(V.2)).

La "esfera" de gas producida por una explosión supernova y que se aleja del punto donde ocurrió la explosión se denomina remanente de supernova. La velocidad típica a la cual esta esfera de gas se mueve es $\sim 10^4 \, \mathrm{km/s}$. Esta esfera de gas interacciona con el viento estelar que fue lanzado por la estrella a mucha menor velocidad antes de la explosión.

Además de interaccionar con el viento estelar, existe la posibilidad de que el material lanzado por la supernova interaccione también con cualquier otra forma de gas que exista en el medio interestelar que rodeaba a la estrella original. Debido a que el material lanzado a raíz de la explosión se mueve de forma supersónica, entonces se produce una onda de choque[†] la cual acelera el material (viento y gas interestelar) al pasar sobre el. El material por detrás de la onda de choque incrementa su temperatura de tal manera que es capaz de emitir radiación electromagnética. La fig.(V.2) muestra el remanente de la supernova del año 1054 D.C., mejor conocido como la nebulosa del cangrejo.



Figura V.2: Observación reciente en radio de la nebulosa del cangrejo (supernova del año 1054 D.C. (cf. fig.(V.1), tomada con el telescopio Ryle del Mullard Radio Astronomy Observatory (MRAO) en la Universidad de Cambridge, Reino Unido.

Detrás de la onda de choque se alcanzan temperaturas $T \sim 10^7$ K durante los primeros 1000 años y debido a que para cualquier proceso radiativo importante se tiene que $h\nu \approx k_B T$, en donde h es la constante de Planck, ν la frecuencia de la onda electromagnética

[†]Una onda de choque es una discontinuidad hidrodinámica (las variables hidrodinámicas —presión, temperatura, velocidad, etc.— tienen un brinco o discontinuidad al pasar a través de una superficie, la onda de choque) que se produce por diversos mecanismos.

radiada y k_B es la constante de Boltzman. De esta manera, se obtiene que los remanentes de supernovas son brillantes en rayos-X en sus primeras etapas.

Justo después de la explosión, el remanente se expande aproximadamente con velocidad constante (expansión libre) y por lo tanto $r \propto t$, donde r es la coordenada radial y t el tiempo medido a partir del momento de la explosión. Esto sucede hasta que la masa que el remanente ha barrido $M_{\rm barr}$ es igual a la masa que se lanzó como producto de la explosión $M_{\rm lanz}$

$$M_{\text{barr}} = \frac{4}{3}\pi r^3 \rho_{\text{ext}} = M_{\text{lanz}}, \tag{33.1}$$

en donde $\rho_{\rm ext}$ representa la densidad del medio ambiente que originalmente envolvía a la estrella antes de la supernova. Después de esto, la onda de choque entra en lo que se conoce como la fase de Sedov-Taylor (o fase adiabática) en la que la evolución del remanente se comporta de manera auto-similar[†]. Para entender el comportamiento de esta fase, introduzcamos el concepto de presión de empuje (presión ram). Esta presión es la presión generada por el movimiento macroscópico de las partículas de fluido que se ejerce sobre un área dada. Considera un chorro de gas cilíndrico (un jet) que se mueve con velocidad no-relativista v sobre un medio en reposo. Un pequeño volumen de gas en el jet en un tiempo Δt está dado por $v\Delta t \times \Delta a$, en donde la altura del cilindro está dada por $v\Delta t$ y el área de su base es Δa . El momento mv que carga la masa de gas contenida dentro de este pequeño cilindro está dado por $\rho \times v\Delta t\Delta a \times v$, donde ρ es la densidad de masa del gas dentro del cilindro. Como la presión es momento por unidad de tiempo (i.e. la fuerza) por unidad de área entonces la presión de empuje $p_{\rm ram}$ que ejerce el jet al expanderse sobre el medio que le rodea está dada por

$$p_{\text{ram}} = \rho v^2. \tag{33.2}$$

Para calcular la presión de empuje en el caso del remanente de supernova, representemos a la presión externa al remanente (viento de la estrella mas gas interestelar) por ρ_{ext} y a la velocidad del frente del remanente (onda de choque) con respecto al gas externo por v.

 $^{^\}dagger$ Se dice que un proceso en la hidrodinámica se lleva a cabo de manera auto-similar si $r \propto t^{\alpha}$, donde el índice de similaridad α es una constante. Físicamente esto quiere decir que si escalamos a la distancia de tal manera que esta se incremente con el tiempo como t^{α} entonces los valores de las cantidades hidrodinámicas permanecen constantes.

Si ahora escogemos un sistema de referencia en el que el frente del remanente se encuentra en reposo, entonces el gas exterior penetra al remanente con una velocidad v. Por lo tanto, la presión de empuje que genera este gas sobre el remanente es $\rho_{\rm ext}v^2=\rho_{\rm ext}\dot{r}^2$ con r la distancia radial al origen. Por la ley de Newton, esta presión debe debe ser del orden (salvo algunas constantes) de la energía total de la explosión E dividida por el volumen de la esfera que envuelve al frente del remanente $\sim 1/r^3$. De aquí que

$$r \propto \left(\frac{E}{\rho_{\text{ext}}}\right)^{1/5} t^{2/5}.$$
 (33.3)

Esta solución es auto-similar. De hecho esta solución fue originalmente encontrada para el caso en el que una explosión fuerte (como una bomba nuclear) ocurriese, y describe bastante bien el comportamiento de una explosión de este tipo.

Tarea 10

Una onda de choque es una discontinuidad hidrodinámica. Dicho de otro modo, las variables hidrodinámicas (presión, temperatura, entropía, velocidad, etc.) varían de manera discontinua al cruzar esta superficie de discontinuidad que siempre puede suponerse como infinitamente delgada (para facilitar cálculos matemáticos). Si se supone que la onda de choque es estacionaria, i.e. $\partial/\partial t=0$, entonces es claro que en el marco de referencia de la onda de choque, el flujo de masa ρv , el flujo de momento $\rho v^2 + \rho y$ el flujo de energía $\rho v(v^2/2+w)$ deben variar de manera continua a través de la onda de choque[†]. De esta manera, si el subíndice 1 y 2 representan cada uno de los lados de la onda de choque

$$\int \operatorname{div}(\rho \boldsymbol{v}) \, d\boldsymbol{V} = \oint \rho \boldsymbol{v} \cdot d\boldsymbol{a} = 0,$$

donde α es el elemento de área normal al volumen de integración. Haciendo tender a cero las dimensiones del volumen, la integral se reduce a $(\rho v)_1 = (\rho v)_2$, en donde los subíndices 1 y 2 representan cada uno de los lados de la discontinuidad. Esto mismo se puede hacer para el caso de las ecuaciones de conservación de momento y energía para un fluido y lo que se obtiene es que los flujos respectivos de momento y energía deben ser conservados a través de la onda de choque.

[†]Para mostrar esto en el caso del flujo de masa, basta con tomar la ecuación de continuidad, ec.(23.2), e integrarla sobre un volumen pequeño V que atraviesa la superficie de discontinuidad. Debido a que $\partial/\partial t = 0$ entonces

entonces

$$\rho_1 v_1 = \rho_2 v_2 \tag{33.4}$$

$$\rho_1 v_1^2 + p_1 = \rho_2 v_2^2 + p_2 \tag{33.5}$$

$$\rho_1 v_1^2 \left(\frac{1}{2} \rho_1 v_1^2 + w_1 \right) = \rho_2 v_2^2 \left(\frac{1}{2} \rho_2 v_2^2 + w_1 \right) \tag{33.6}$$

Una onda de choque produce una compresión, es decir, cuando el gas del lado 1 pasa al lado 2 se obtiene que $p_2 > p_1$. De aquí y utilizando las ecs.(33.4)-eq.5.99.3 se pude mostrar que $v_1 > v_2$. Además, el flujo pasa de un estado supersónico en el lado 1 a uno subsónico en el lado 2. Se dice que una onda de choque es fuerte cuando $p_2 \gg p_1$. Esto sucede en el caso de explosiones supernova o explosiones nucleares por ejemplo.

(I) Utilizando el hecho de que la entalpía específica para un gas politrópico está dada por la famosa relación $w = \kappa p/(\kappa - 1)\rho$, muestra que en el caso de una onda de choque fuerte, las ecs.(33.4)-(33.6) implican que

$$\frac{\rho_2}{\rho_1} = \frac{\kappa + 1}{\kappa - 1}.\tag{33.7}$$

Muestra también utilizando la ecuación de estado del gas ideal, ec.(27.17), que la discontinuidad en las temperaturas para este tipo de onda de choque está dada por

$$\frac{T_2}{T_1} = \frac{(\kappa - 1) \, p_2}{(\kappa + 1) \, p_1}.$$
 (33.8)

(II) Muestra utilizando el inciso anterior (o de cualquier otra manera) que una onda de choque fuerte cumple con la relación de que $M_1 \equiv v_1/c_1 \gg M_2 \equiv v_2/c_2$, en donde la velocidad del sonido del gas $c = (\partial p/\partial \rho)_s = \kappa p/\rho$. Además muestra que la presión del lado 2 (presión post-choque) está dada por

$$p_2 = \rho_1 v_1^2, \tag{33.9}$$

es decir, coincide con la presión de empuje (cf. ec.(33.2)).

En el caso de una onda de choque producida por una supernova se tiene que los puntos geométricos r(t) de la onda de choque esférica que se expande sobre el medio interestelar

están determinados por la ley de Newton

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\mathsf{M}_{\mathsf{cap}}v_2\right) = 4\pi r^2 \mathsf{p}_{\mathsf{eff}}.\tag{33.10}$$

En esta ecuación v_2 es la velocidad post-choque medida desde el marco de referencia de la onda de choque. La presión p_{eff} es la presión que genera el gas postchoque detrás de la onda de choque de tal manera que la ec.(33.10) es válida. Dentro de la esfera formada por la onda de choque se encuentra material de la explosión mas el gas barrido por la onda de choque. La masa M_{cap} de esta esfera está dada por $M_{cap} = (4\pi/3)r^3\rho_2$, en donde ρ_2 es la densidad detrás de la onda de choque. Desde el marco de referencia del gas, lejos de la explosión, la velocidad con que viaja la onda de choque es $v_s = \dot{r}$.

(III) Suponiendo que $p_{eff} = \alpha p_2$, con α una constante de proporcionalidad y usando el hecho de que $v = \dot{r}$, muestra que la ec.(33.10) puede escribirse como

$$\dot{\mathbf{r}} = A\mathbf{r}^{3(\alpha - 1)}.\tag{33.11}$$

¿Qué valor tiene la constante A?

La energía cinética de la capa de gas detrás de la onda de choque está dada por

$$E_k = \frac{1}{2} M_{cap} v^2 = \frac{1}{2} \left(\frac{4\pi}{3} r^3 \rho_1 \frac{\kappa - 1}{\kappa + 1} \right) \dot{r}^2, \tag{33.12}$$

y la energía interna U está dada por

$$U = \frac{p_{\text{eff}} \times \text{Volumen}}{\kappa - 1} = \frac{4\pi}{3} r^3 \frac{\alpha p_1}{\kappa - 1}.$$
 (33.13)

(IV) Usando el hecho de que la energía total E es

$$E = const = E_k + U, (33.14)$$

demuestra que la constante A está relacionada a la energía total mediante

$$A = \frac{3(\kappa - 1)E}{4\pi(\kappa + 1)o_1}$$
 (33.15)

y que los puntos geométricos r(t) del choque evolucionan en el tiempo como

$$r = \zeta \left(\frac{E}{\rho_1}\right)^{1/5} t^{2/5},$$
 (33.16)

donde ζ es una constante. Compara este resultado con el sencillo análisis dimensional hecho para obtener la ec. (33.3).

Los remanentes de supernova son capaces de energetizar al medio interestelar con metales mediante la expansión de la onda de choque a partir del punto explosivo. Como ya mencionamos antes, la gran mayoría de los elementos formados en la tierra fueron creados en explosiones supernova y lanzados al espacio interestelar mediante los remanentes de supernova.

§34. Pulsares

Las estrellas de neutrones se enfrían rápidamente después de su formación debido a la elevada emisión de neutrinos. Este enfriamiento se lleva acabo a partir del núcleo hacia afuera. La temperatura del núcleo desciende a valores $\lesssim 10^{11}\,\mathrm{K}$ en $\sim 10^3\,\mathrm{años}$ y la temperatura de la superficie alcanza valores $\sim 10^6\,\mathrm{K}$. El radio de estos objetos es tan pequeño que la luminosidad emitida es demasiado pequeña como para ser detectada en la tierra. Esta emisión es predominantemente en el extremo ultra violeta (EUV) y es absorbida mediante absorción fotoeléctrica por el hidrógeno que se encuentra en el plano de la galaxia. Por esta razón el flujo observado en la tierra es excesivamente pequeño. A la fecha no existe una clara evidencia de radiación térmica (cuerpo negro) proveniente de una estrella de neutrones.

Los modelos de estrellas de neutrones fueron realizados primeramente por el Soviético Landau y el norte-americano Zwicky en la década de los años 1930's. Sin embargo, no fue sino hasta la década de los 1960's que gracias a los satélites de rayos—X cuando se identificaron a ciertas fuentes como estrellas de neutrones. De hecho, Zwicky y Bade predijeron que en el remanente de supernova de la nebulosa del cangrejo debería encontrarse una estrella de neutrones en su interior.

Las estrellas de neutrones fueron descubiertas de manera indirecta por Bell y Hewish del Laboratorio Cavendish de la Universidad de Cambridge. Al construir un detector en

§34 PULSARES 147

radio para captar centelleos veloces en diversas emisiones en radio provenientes del cielo, se dieron cuenta que existían algunas fuentes pequeñas que emitían radiación en radio de manera periódica. Esta periodicidad es del orden de 1 s y posee una precisión extraordinaria. Estos objetos fueron inmediatamente nombrados *pulsares*. Los pulsares conocidos tienen periodos P en el intervalo $1.6~\mu s \lesssim P \lesssim 5 \, s$. Este periodo se incrementa lentamente como función del tiempo y en ocasiones tiene fluctuaciones muy pequeñas (llamados "glitches" que se deben a temblores internos en la estructura de la estrella). Debido a la gran precisión de su periodo, los pulsares resultan ser relojes excelentes .

La manera en la que Bell y Hewish identificaron a los pulsares como estrellas de neutrones fue la siguiente. Ellos imaginaron a un objeto compacto (digamos una estrella) que rotaba. Entonces utilizando el hecho de que para que una estrella pueda rotar necesariamente se tiene que la aceleración centrífuga ($\Omega^2 R$), con Ω la velocidad angular, debe ser \leq que la aceleración de atracción gravitacional (GM/R) y por lo tanto

$$\Omega^2 \lesssim \frac{GM}{R^2} \sim G\rho.$$
 (34.1)

De aquí que para objetos con periodos P<1s se obtenga que $\rho\sim 10^{10}\,kg\,m^{-3}$ y por lo tanto el objeto queda identificado como una estrella de neutrones en rotación.

El modelo mas preciso que se tiene de un pulsar fue descrito por Gold y se refiere a que un pulsar es una estrella de neutrones magnetizada en rotación. Para esto se considera una estrella que gira con una frecuencia angular Ω y que tiene un momento bipolar magnético p_m y un campo magnético B_p sobre el eje del dipolo como muestra la fig.(V.3). El eje del dipolo magnético hace un ángulo α con respecto al eje de rotación. De esta manera, la perdida de energía de rotación (la potencia) $-dE_{rot}/dt \equiv P$ puede calcularse de la siguiente manera. Debido a que el campo magnético está amarrado con la estrella y por lo tanto gira con la rotación de la misma, entonces existe un radio máximo R_c hasta el cual la velocidad de corrotación de una partícula alcanza la velocidad de la luz. Este radio es claramente $R_c = c/\Omega$. Si suponemos que el campo hasta esta posición está determinado por un dipolo, entonces debido a que el momento bipolar magnético p_m está dado por

[†]De hecho los pulsares resultan ser los mejores laboratorios para poner a prueba la teoría relativista de la gravitación propuesta por Einstein. Esto debido a que para hacer experimentos en la teoría de la relatividad general se requiere un buen reloj (pulsar) dentro de un campo gravitacional fuerte (producido por el mismo pulsar)

$$p_{m} = \frac{2\pi}{\mu_{0}} B_{p} R^{3}, \tag{34.2}$$

para un dipolo magnético, entonces $B_c \approx B_p (R/R_c)^3$. Por otra parte, la densidad de energía magnética tiene el valor B^2/μ_0 y así se obtiene

$$\begin{split} P &\sim \frac{Energía}{tiempo} = \text{Densidad de energía } \times \text{Volumen } \times \text{frecuencia} \\ &\sim \frac{B_p^2 R^6 \Omega^4}{\mu_0 c^3}. \end{split} \tag{34.3}$$

Tarea 11

En el caso de un dipolo magnético la potencia P está dada por la fórmula de Larmour

$$P = \frac{\mu_0}{6c^3} |\ddot{\mathbf{p}}_{\rm m}|^2, \tag{34.4}$$

en donde p_m es el momento bipolar magnético cuya magnitud está dado por la ec.(34.2). En el caso de un pulsar, como lo muestra la fig.(V.3), se obtiene que $p_m = p_{m_0} \Omega^2 \sin \alpha$ con $p_{m_0} = p_{m_0} e_z$. Además, en el caso de un dipolo magnético, la intensidad del campo magnético B está dada por

$$\mathbf{B} = \frac{\mu_0 p_{m_0}}{4\pi r^3} \left\{ 2\cos\theta \mathbf{e}_r + \sin\theta \mathbf{e}_\theta \right\}. \tag{34.5}$$

(1) Calcula el valor del campo magnético B_p en el polo, i.e. cuando $\theta=0$, y de aquí muestra que la potencia de radiación de un pulsar está dada por

$$P = -\frac{dE_{rot}}{dt} = \frac{2\pi}{3c^{3}\mu_{0}}B_{p}^{2}R^{6}\Omega^{4}\sin^{2}\alpha,$$
 (34.6)

(compara esta ecuación con la ec.(34.3)) en donde la E_{rot} representa la pérdida de energía por rotación que para el caso de un cuerpo rígido esférico está dada por

$$\mathsf{E}_{rot} = \frac{1}{2} \mathsf{I} \Omega^2, \tag{34.7}$$

§34 PULSARES 149

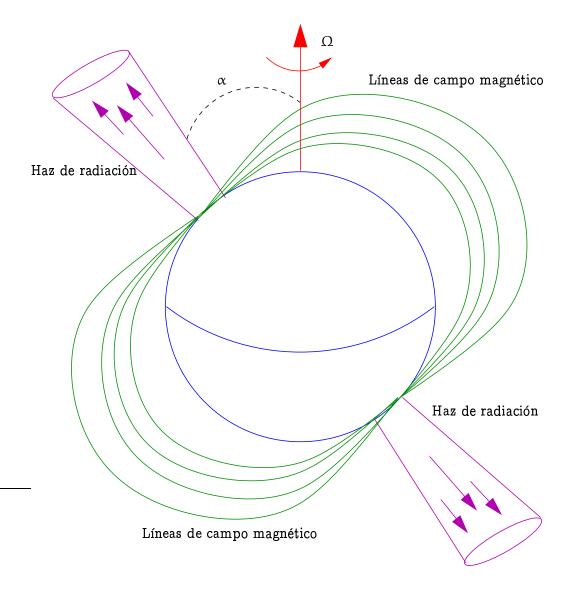


Figura V.3: Modelo de una estrella de neutrones magnetizada en rotación, denominada pulsar. Una estrella de neutrones con radio $\sim 10 \ \rm km$ gira con velocidad angular Ω alrededor de un eje determinado. Existe un dipolo magnético cuyo eje hace un ángulo α con respecto al eje de rotación. El haz de radiación electromagnética es lanzado sobre el eje del dipolo y por lo tanto, mientras la estrella rota, un observador lejano ve pulsos de radiación con una frecuencia bien establecida.

con I el momento de inercia del pulsar.

(II) Muestra utilizando el inciso anterior, o de alguna otra manera, que debido a que P > 0 entonces la velocidad de rotación del pulsar disminuye debido a la pérdida de energía rotacional, en completo acuerdo con las observaciones.

(III) El tiempo característico τ que tarda una estrella de neutrones en reducir su periodo de pulsación está dado por $\tau \equiv -\Omega/\dot{\Omega}$. Muestra que

$$\tau = \frac{3Ic^3\mu_0}{2\pi B_p^2 R^6 \sin^2\alpha\Omega^2} \tag{34.8}$$

El modelo del dipolo magnético para una estrella de neutrones puede ser puesto a prueba observacional utilizando el *índice de ruptura* n que está definido mediante la relación $\dot{\Omega} \propto -\Omega^n$, y por lo tanto

$$n = -\frac{\Omega \ddot{\Omega}}{\dot{\Omega}^2} = 3. \tag{34.9}$$

En el caso de la nebulosa del cangrejo el valor de este índice es de ~ 2.5 .

Únicamente algunos pulsares están asociados con remanentes de supernovas. Las razones son diversas, pero puede deberse a que la supernova sea de tipo I o a que el pulsar tenga movimientos que impidan su observación, o a que en vez de un pulsar se forme un agujero negro o por último a que la radiación pulsante no atraviese a la tierra.

§35. Límite de Eddington

En ciertos fenómenos astrofísicos la radiación producida por flujos de fotones es capaz de balancear a la fuerza gravitacional. El caso mas sencillo es el de una estrella soportada únicamente por presión de radiación como vimos en la sección $\S 29$. Si se considera que el gas está totalmente ionizado, entonces la presión ejercida por la radiación se deberá a la dispersión de Thomson de la radiación producida por los electrones en el gas ionizado. De cualquier forma, la ventaja de utilizar la sección transversal de Thomson σ_T en el problema es que esta sección de área efectiva es la menor posible. Por lo tanto, la presión que se producirá por un flujo de fotones incidente en electrones (presión es fuerza sobre

área) será la máxima posible.

La fuerza F que ejerce el flujo de fotones f (número de fotones por unidad de área por unidad de tiempo) sobre los electrones del plasma está dada por $F = \sigma_T f p$. Aquí, $p = h\nu/c$ es el momento que imparte cada fotón con frecuencia ν al área efectiva de interacción σ_T . El flujo de fotones a una distancia r de la fuente está dado por (cf. ec.(6.1)) $f = L/4\pi r^2 h\nu$. Por otra parte, la fuerza gravitacional F_g que actúa sobre un par protón-electrón del gas es $F_g = GM \left(m_p + m_e\right)/r^2 \approx GM m_p/r^2$, en donde M es la masa del gas en consideración. La masa del protón y del electrón son respectivamente m_p y m_e . La ventaja de poner a la masa de un protón en la fuerza gravitacional (en vez de la de un electrón) es que proporcionará la máxima fuerza gravitacional disponible. De esta manera, al igualar F_g con F encontraremos el valor máximo que los fotones deben realizar para contener a una masa M.

Con lo anterior y haciendo $F = F_g$ se obtiene la Luminosidad de Eddington L_{Edd} que está dada por

$$L_{\rm Edd} = \frac{4\pi G M m_{\rm p} c}{\sigma_{\rm T}} \approx 10^{31} \frac{M}{M_{\odot}} \, \rm W. \tag{35.1}$$

Esta luminosidad representa la luminosidad máxima que un objeto puede tener para que exista un equilibrio entre fuerzas de radiación y fuerzas de gravitación. Si la luminosidad de Eddington es excedida el objeto gravitacional es inestable y tiende a despedazarse. Lo maravilloso de la luminosidad de Eddington es que únicamente depende de la masa del objeto. Por esta razón y utilizando la relación de masa—luminosidad, descrita en la sección §29, es posible obtener una cota superior para la masa de una estrella de ~ 100M_☉ como se mencionó en la sección §30.

§36. Transferencia de masa

Como ya hemos mencionado, alrededor del 70% de las estrellas en la galaxia se encuentran en sistemas binarios. Para facilitar las observaciones se define la *inclinación de la órbita* como el ángulo i tal que si la órbita de un objeto se encuentra contenida en el plano del cielo, entonces i = 0. En cualquier otro caso $i \neq 0$.

Dos estrellas de masas m₁ y m₂ orbitan alrededor del centro de masa del sistema.

Medido en algún sistema de referencia el centro de masa r_{cm} está dado por $r_{cm}=(m_1r_1+m_2r_2)/(m_1+m_2)$. Los radio vectores de las masas m_1 y m_2 están dados por r_1 y r_2 . Si escogemos al centro de masa como el origen, entonces $m_1r_1+m_2r_2=0$. Es costumbre definir el radio vector $\mathbf{r}\equiv \mathbf{r}_1-\mathbf{r}_2$. Así $\mathbf{r}_1=\mu\mathbf{r}/m_2$ y $\mathbf{r}_2=\mu\mathbf{r}/m_1$, con $\mu=m_1m_2/(m_1+m_2)$ la masa reducida del sistema. Además si a_1 y a_2 son los semiejes mayores de las respectivas órbitas del sistema con foco en el centro de masa, entonces $a_1+a_2=a$. Aquí a representa el semieje mayor de la elipse producida por el radiovector \mathbf{r} . De esta manera, la ley de Kepler para el sistema es

$$G(m_1 + m_2) P^2 = 4\pi^2 a^3, (36.1)$$

en donde P es el periodo de la órbita. Supongamos que las velocidades orbitales $K_1 \equiv v_1 \cos i$ y $K_2 \equiv v_2 \cos i$ de ambas masas pueden ser medidas, ya sea por efecto Doppler, cambios espectrales o pulsación del periodo de la órbita (en el caso de un pulsar). En el caso de que i=0 entonces como el momento total con respecto al centro de masa es cero se obtiene que

$$\frac{v_1 \cos i}{v_2 \cos i} = \frac{v_1}{v_2} = \frac{r_2}{r_1} = \frac{m_2}{m_1}.$$

En otras palabras, la razón de masa m_2/m_1 es una cantidad observada. En el caso de que las órbitas sean mas o menos circulares y que $i \neq 0$, entonces las velocidades orbitales están dadas por

$$K_1 \equiv \frac{2\pi}{P} \alpha_1 \sin i, \qquad K_2 \equiv \frac{2\pi}{P} \alpha_2 \sin i.$$
 (36.2)

Utilizando la ec.(36.1), la ley de Kepler de la ec.(36.1) implica que los factor de masa f_1 y f_2 estén determinados por

$$f_{1,2} \equiv \frac{PK_{1,2}^3}{2\pi G} = \frac{(m_{2,1}\sin i)^3}{(m_1 + m_2)^2}.$$
 (36.3)

De esta manera, como $f_1/f_2 = (K_1/K_2)^3 = (m_2/m_1)^3$ entonces si se conoce el cociente K_1/K_2 se puede determinar la fracción de masa m_2/m_1 .

La paradoja de Algol fue el primer sistema en donde se descubrió la transferencia

de masa de una estrella a otra. La interpretación fue descrita por Crawford en la década de los 1960's. A principios del siglo XIX J. Goodricke descubrió que la estrella brillante a simple vista Algol (β Per) es eclipsada por su compañera cada 2.9 días. La estrella brillante es una estrella normal que quema hidrógeno en su centro con una masa $\sim 4 M_{\odot}$. La estrella eclipsante es una estrella evolucionada subgigante de $\sim 0.8 M_{\odot}$. Sin embargo, como se ha mencionado, las estrellas mas masivas, evolucionan mas rápido que las estrellas menos masivas. Esto se contradice totalmente en este sistema y a esta contradicción se le conoce como la paradoja de Algol. Lo que realmente sucede es que primeramente la estrella mas masiva evoluciona y se expande hasta completar su etapa de quemado de hidrógeno. Durante esta etapa, la compañera menos masiva distorsiona y captura gravitacionalmente a la envolvente de la estrella masiva. La consecuencia de este fenómeno es que la fracción de masa queda invertida mediante este proceso.

Consideremos un sistema binario que órbita alrededor de su centro de masa. Si tomamos un sistema de referencia que rota con el sistema binario de tal manera que el origen coincida con el centro de masa del sistema, entonces el potencial está dado por

$$\phi = -G \frac{m_1}{r_1} - G \frac{m_2}{r_2} - \Omega^2 r^2, \tag{36.4}$$

en donde Ω representa la velocidad de rotación del sistema medido desde las estrellas fijas. El potencial centrífugo está dado por $\Omega^2 r^2$. Las superficies equipotenciales están graficadas en la fig.(V.4). La superficie de una estrella es una líneas equipotencial. De tal manera que cuando una de las estrellas (la mas masiva) evoluciona, entonces llega un momento en que su superficie se expande tanto que comparte líneas equipotenciales con la otra estrella. De esta manera la estrella que evolucionó primero lanza su masa hacia la segunda a través del punto de Lagrange L_1 . Este proceso de transferencia de masa de una estrella a la otra se denomina flujo del lóbulo de Roche. Existe también la posibilidad de capturar masa de una estrella si una de las estrellas posee un viento estelar fuerte que es capturado por la compañera.

La transferencia de masa se lleva acabo generalmente de la estrella mas masiva a la estrella menos masiva. Cuando esto sucede, la transferencia continua rápidamente hasta que las masas se igualan y la transferencia se vuelve mas pacífica. Como muestran las simulaciones numéricas, los detalles de esta transferencia dependen de como varía el radio

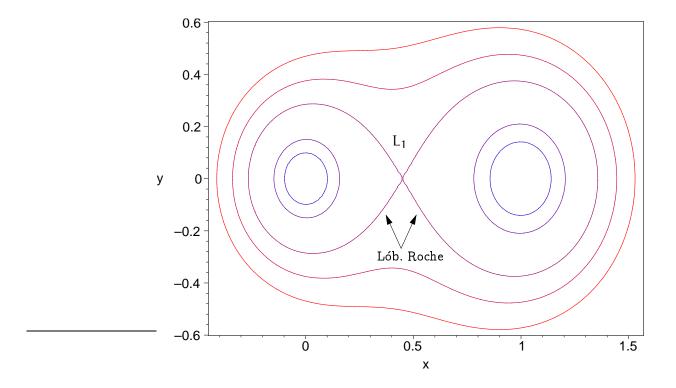


Figura V.4: La figura muestra algunas superficies (líneas) equipotenciales de un sistema binario en corrotación. Se ha supuesto que la masa de la estrella que se encuentra en el origen es de $1 M_{\odot}$. En la posición $x=1\,\mathrm{AU}$ se encuentra otra estrella de masa $1.5 M_{\odot}$. La velocidad angular de rotación del sistema es $1\,\mathrm{año}^{-1}$. Las distancias en la gráfica están medidas en unidades astronómicas. El punto donde la curva cerrada intersecta al eje x es el punto interno de Lagrange L1. A esta curva cerrada se le denomina el lóbulo de Roche.

de la estrella al perder masa. La perdida y transferencia de masa en un sistema binario puede cambiar el periodo orbital de valores tan pequeños como de 100 días hasta valores de unas cuantas horas.

Cuando una de las estrellas en un sistema binario evoluciona para convertirse en una enana blanca su periodo orbital es de unas cuantas horas y el semieje mayor es menor al radio del sol. En este caso la transferencia de masa es tan grande que el sistema genera una variable cataclísmica. Cuando estas estrellas varían su luminosidad óptica por factores de ~ 100 en unas cuantas semanas se denominan enanas nova.

En ciertas circunstancias, la masa que se acreta a una de las estrellas es rica en

hidrógeno. Debido al calentamiento generado por la acreción, es posible que el hidrógeno se queme de manera explosiva. Esto genera un brillo fuerte (explosivo) y es observado en la tierra como una *nova*. En el caso en que la masa expulsada por las explosiones nova sea menor a la masa acretada, la enana blanca puede alcanzar el límite de Chandrasekhar y generar una explosión supernova de tipo I. La energía termonuclear extraída por esta esta explosión es suficiente para llevar a infinito todo el material de la estrella y por lo tanto no se produce un remanente compacto.

Cuando el objeto compacto resulta ser una estrella de neutrones, entonces la acreción genera emisión de rayos-X. En efecto, la luminosidad L_{grav} producida por la liberación de energía gravitacional de la estrella en este caso está dada por

$$L_{grav} = \frac{GM\dot{M}}{R} = 4\pi R^2 \sigma T_{sup}^4, \tag{36.5}$$

en donde \dot{M} es la taza de acreción (cantidad de masa por unidad de tiempo debida a la acreción hacia una estrella). La temperatura de la superficie de la estrella está representada por $T_{\rm sup}$ y el último paso en la ec.(36.5) es la ley de Boltzman (por unidad de tiempo) para un cuerpo negro. En el caso de acreción hacia estrellas de neutrones centrales la taza de acreción \dot{M} es tan grande que llega a rebasar valores de luminosidad solar L_{\odot} . Con esto se generan temperaturas del orden de 10^6 K que corresponde al rango de rayos-X. Estos objetos se denominan binarias de rayos-X. Cuando el objeto compacto es un agujero negro es posible producir también rayos-X. Las estrellas binarias de rayos-X están clasificadas en dos conjuntos. El primer grupo sucede cuando la compañera tiene masas $\gtrsim 10 M_{\odot}$. En este caso el sistema se denomina HMXB (High mass X-ray Binary). El segundo grupo corresponde a estrellas binarias de masas $\lesssim 1 M_{\odot}$ que se denomina LMXB (Low mass X-ray Binary).

Para que se produzca una binaria de rayos—X se requiere que una explosión supernova en un sistema binario haya ocurrido. La explosión supernova debe haber ocurrido por la estrella de menos masa en el sistema cuando acretó su masa por medio de transferencia de masa. En el caso en que sea la estrella mas masiva la que explote lo que se obtiene es una estrella que se aleja de la órbita y un pulsar con velocidad elevada se queda en la órbita.

§37. Acreción

El proceso de acreción ocurre cuando gas o materia cae hacia un objeto gravitacional compacto y se acumula sobre el mismo. Esto sucede esencialmente sobre cualquier objeto gravitacional. Sin embargo el proceso de acreción es mucho mas eficiente cuando el objeto gravitacional central posee una gran energía de amarre ($\propto M/R$).

Para entender de manera simple la forma en la cual se extrae energía debida a los procesos de acreción, consideremos el siguiente ejemplo. Supongamos que se tiene acreción de materia hacia una estrella de masa M y radio R. Si la materia cae sobre la superficie de la estrella desde infinito libremente, entonces la energía cinética que adquiere la materia se incrementa a medida que su energía potencial se vuelve mas negativa, i.e. cuando la distancia al centro de la estrella disminuye. En el caso de que un protón con masa m_p que cae libremente desde infinito, la energía cinética está dada por

$$\frac{1}{2}m_{\mathbf{p}}v^2 = \frac{GMm_{\mathbf{p}}}{r},\tag{37.1}$$

en donde r es la coordenada radial medida desde el centro de la estrella y v es la velocidad de caída libre. Cuando el gas que cae alcanza el radio de la estrella r = R entonces es desacelerado violentamente. De esta manera toda la energía cinética tiene que ser radiada en forma de calor, lo cual produce radiación (que llega a ser hasta radiación de rayos—X en el caso de acreción de gas sobre estrellas de neutrones como vimos en la sección $\S 36$).

Si la taza de acreción (razón de cambio en el tiempo a la cual se acreta masa hacia el objeto central) está dada por \dot{m} entonces la taza de disipación de energía cinética en la superficie de la estrella está dada por $\dot{m}v^2/2$. De esta manera, la luminosidad de la fuente L está dada por

$$L = \frac{1}{2}\dot{m}v^2 = \frac{GM\dot{m}}{R} = \frac{1}{2}\dot{m}c^2\left(\frac{r_S}{R}\right),\tag{37.2}$$

en donde el $radio\ de\ Scharzschild\ r_S\equiv 2GM/c^2$. Como veremos en las próximas secciones, este radio es un radio que aparece cuando los fenómenos relativistas deben ser incluidos en las descripciones gravitacionales. De hecho, esto es claro utilizando análisis dimensional. En efecto, cuando se consideran fenómenos relativistas en la gravitación para los cuales se tiene una longitud característica –como el radio de una estrella– entonces puede for-

marse un parámetro adimensional dado por r/r_s el cual debe jugar un papel importante en la descripción de todos los fenómenos físicos (cf. teorema Π de Buckingham del análisis dimensional).

De la ec.(37.2) se sigue que la luminosidad puede escribirse como

$$L = \xi \dot{m}c^2, \tag{37.3}$$

en donde ξ es el factor de eficiencia de conversión de energía en reposo (de la masa acretada hacia la estrella) en calor. Con el simple análisis aquí expuesto se ve que $\xi \approx r_{\rm S}/2R$. En otras palabras, el factor de conversión de energía es mayor para objetos de menor radio como las estrellas de neutrones. En el caso de enanas blancas $\xi \approx 3 \times 10^{-4}$ y en el caso de estrellas de neutrones $\xi \approx 0.1$. Para dar una idea de lo grande que es este factor de conversión de energía, consideremos el caso de la reacción nuclear p-p en donde se convierte hidrógeno a helio (cf. eq.(28.6)). En este caso $\xi \approx 7 \times 10^{-3}$. De aquí se ve que el fenómeno de acreción hacia una estrella de neutrones es aproximadamente un orden de magnitud mas eficiente en comparación con la generación de energía nuclear. Mas adelante veremos que este factor de conversión de energía de masa en reposo es bastante mas grande para el caso de agujeros negros.

La manera en la cual cae gas hacia un objeto gravitacional compacto puede ocurrir de diversas formas. Sin embargo únicamente se conocen tres soluciones analíticas a los problemas de acreción. En la acreción esférica o acreción de Bondi se considera un objeto gravitacional compacto en reposo sumergido dentro de un gas de extensión infinita y con temperatura T. En la acreción de línea un cuerpo gravitacional compacto se mueve con velocidad v a través de un gas de temperatura despreciable. Por último, la acreción de disco ocurre sobre un plano debido a que el gas posee un momento angular inicial considerable. En todos los casos, el movimiento térmico o dinámico del gas es quién provee la acreción.

Tarea 12

Considera un objeto condensado (como una estrella o un agujero negro) que se encuentra inmerso dentro de una nube de gas mucho mas grande que el objeto condensado. De esta

manera, el objeto "central" puede aproximarse mediante un punto, que por comodidad pondremos en el origen de coordenadas. Supongamos que la gravedad propia del gas es despreciable en comparación con la gravedad que ejerce el objeto central sobre cualquier partícula de fluido en la nube. Por lo tanto, la dinámica de las partículas de fluido en la nube de gas está determinada por las condiciones iniciales y de frontera, así como por la fuerza gravitacional producida por el objeto central.

1. Suponiendo que el gas en la nube ha alcanzado un estado estacionario ($\partial/\partial t = 0$) y que este mismo obedece una relación politrópica, muestra utilizando las ecuaciones no-relativistas de continuidad y de Euler que la velocidad $v = ve_r$, donde r es la coordenada radial, obedece la siguiente ecuación

$$\frac{1}{v}\left(1 - \frac{v^2}{c^2}\right)\frac{dv}{dr} = -\frac{2}{r} + \frac{GM_{\star}}{r^2c^2}.$$
 (37.4)

Aquí hemos supuesto simetría esférica (pues el flujo ha alcanzado un estado estacionario) y hemos escrito a la masa del objeto central como M_{\star} . Este tipo de flujo se denomina flujo de acreción de Bondi en honor a su creador y es uno de los problemas mas famosos de la astrofísica[†].

2. Muestra con ayuda de la ec.(37.4), o de alguna otra manera, que una partícula de fluido alcanza un valor sónico en el punto

$$r_s = \frac{GM}{2c^2}. (37.5)$$

- 3. Define M = v/c y $\xi = r/r_s$. Muestra entonces que
 - (a) Si M \gg 1 y $\xi \gg$ 1 entonces $M^2 \approx 4/\xi + const.$
 - (b) Si M \ll 1 y $\xi \ll$ 1 entonces M² $\approx const \times e^{-4/\xi}$.
 - (c) Si M $\ll 1$ y $\xi \gg 1$ entonces $M^2 \approx 4/\xi^4.$
 - (d) Cerca del punto sónico, cuando $M=1-\varepsilon$ y $\xi=1-\delta$ (ε y δ cantidades pequeñas) muestra que $dM/d\xi=\pm 2$.

[†]Para distancias suficientemente alejadas del objeto central, la ec.(37.4) es válida incluso cuando el objeto central es un agujero negro o una estrella de neutrones. Esto porque la métrica del espacio-tiempo generada por estos objetos resulta converger a la métrica Newtoniana para radios suficientemente grandes.

(e) Con todo esto, haz una gráfica de M vs. ξ donde muestres las regiones sónicas, subsónicas y supersónicas. Muestra como varía la velocidad dentro de este diagrama.

4. Utilizando el teorema de Bernoulli, o de cualquier otra manera, muestra que la velocidad del sonido $c(r_s)$ evaluada en el punto sónico está dada por

$$c(r_s) = \left\{ \frac{2}{5 - 3\kappa} \right\}^{1/2} c_{\infty}, \tag{37.6}$$

en donde c_{∞} es el valor de la velocidad del sonido en $r=\infty$.

 La taza de acreción M se define como la cantidad de masa por unidad de tiempo que cae al objeto central de masa M_{*}. Muestra utilizando la ecuación de continuidad o de alguna otra manera, que

$$\dot{M} = 4\pi r^2 \rho v = const. \tag{37.7}$$

De aquí muestra, después que hayas mostrado la igualdad $\rho^{\kappa-1}(r_s)c_\infty^2=\rho_\infty^{\kappa-1}c^2(r_s)$, que para el flujo de acreción de Bondi (o acreción esférica) la taza de acreción está dada por

$$\dot{M} = \frac{\pi G M_{\star}^2 \rho_{\infty}}{c_{\infty}^{3/2}} \left\{ \frac{2}{5 - 3\kappa} \right\}^{(5 - 3\kappa)/(2(\kappa - 1))}, \tag{37.8}$$

donde ρ_{∞} es el valor de la la densidad evaluado lejos del objeto central.

Cuando el gas en la nube infinita de gas —la cual proporciona la acreción de Bondiposee una pequeña rotación, entonces las líneas de corriente que caen hacia el objeto central resultan no ser líneas radiales. De hecho cuando la nube gira como un cuerpo rígido alrededor de un eje que pasa por el centro de la estrella, la acreción se lleva acabo mas o menos en trayectorias parabólicas. El foco de la parábola es la estrella y por lo tanto, las líneas de corriente no terminan en la superficie de la estrella como sucede en el caso de la acreción esférica (la única excepción es la línea de corriente que está en el eje de rotación pues cualquier partícula de fluido en esta región carece de momento angular). En el plano ortogonal al eje de rotación y que intersecta al centro de la estrella, las líneas de corriente provenientes de "arriba" y "abajo" de este plano colisonan con su contraparte

simétrica que viene del otro lado del plano. Es probable que la componente ortogonal de la velocidad a este plano se anule después de la interacción mediante la generación de una onda de choque producida por la colisión. En otras palabras, la energía cinética de las partículas en la dirección ortogonal al plano se termaliza (se convierte en energía térmica) y se pierde mas tarde mediante radiación. Con esto, las partículas de fluido únicamente tienen componentes de velocidad dentro del plano. Debido a que el momento angular de cada partícula debe conservarse a lo largo de su trayectoria, entonces las partículas de fluido que ahora limitan su movimiento al plano deben girar alrededor del eje de rotación. De esta manera se espera que un disco de gas que gira alrededor del eje de rotación de la nube se produzca (vease fig.V.5).

Las partículas de gas que giran en un plano, alrededor del objeto central tienden a hacerlo en un disco de gas debido a la simetría del problema. A este objeto gaseoso y masivo que es autogravitante se le denomina disco de acreción. El gas gira alrededor del objeto central de tal forma que comienza a acretarse (caer) hacia el objeto central. Esto sucede debido a que una viscosidad genera fricción entre las partículas a diversos radios. De esta manera, se transporta momento angular a las partes mas lejanas del disco a expensas de que las partículas sean acretadas hacia el centro del disco, donde se encuentra el objeto central.

Formalmente, consideremos un disco de gas de tal manera que el gas tenga un momento angular significante. Debido a que las partículas que se encuentran girando en distintos radios poseen velocidades diferentes, se genera fricción o viscosidad entre las mismas. Si suponemos que la dinámica del gas ha alcanzado un estado estacionario ($\partial/\partial t=0$) entonces la masa de gas formará una circunferencia o disco. Supongamos que la masa del disco $M_{\rm disc}$ es mucho menor que la masa del objeto central (estrella) M. Si el disco se encuentra sobre el plano 0xy entonces la condición de balance hidrostático en la componente z está dada por (cf. ec.(25.1))

$$\frac{\partial p}{\partial z} = -G \frac{M \rho \sin \theta}{r^2}.$$
 (37.9)

Debido a que $\sin\theta \approx z/r$ y como $\partial p/\partial z \approx p/Z$, en donde Z es aproximadamente la altura del del disco, entonces la condición de la ec.(37.9) toma la forma

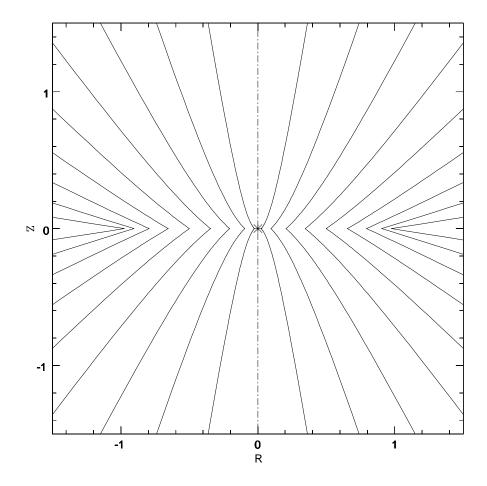


Figura V.5: Lineas de corriente producidas por la atracción gravitacional hacia un objeto central condensado que se encuentra en el origen de coordenadas. El gas que rodea a la nube es considerado infinitamente extenso y posee un momento angular específico (momento angular por unidad de masa) alrededor del eje 0z dado por $\Gamma_{\infty} \ll 1$. El plano mostrado en la figura corresponde a un ángulo azimutal $\varphi = \text{const.}$ Cada línea de corriente colisiona con su contraparte simétrica en el plano 0xy. Esto produce una termalización de la componente de velocidad en dirección ortogonal al plano y por lo tanto las partículas de fluido se quedan rotando (por conservación de momento angular) alrededor del eje 0z en un disco de acreción. En la figura, las distancias están medidas en unidades del radio del disco. De esta manera, la proyección del disco en el plano $\varphi = \text{const.}$ corresponde a la línea que va de -1 a +1 en el eje horizontal. En la figura $R^2 = x^2 + y^2$.

$$\frac{p}{7} = -G \frac{M\rho \sin \theta}{r^2}.$$
 (37.10)

El gas que gira en el disco, órbita rápidamente y tiene una componente radial hacia el objeto condensado muy pequeña. Por esta razón es válido pensar que cada partícula de fluido posee una órbita Kepleriana alrededor del objeto central. Por lo tanto, cada partícula de gas se encuentra cercanamente en un equilibrio centrífugo, es decir, $v_{\varphi}^2/r = GM/r^2$ en donde v_{φ} es la componente de la velocidad en la dirección azimutal. Con esto, la ec.(37.10) queda como

$$\frac{Z}{r} pprox \frac{1}{v_{\omega}} \sqrt{\frac{p}{\rho}} pprox \frac{c}{v_{\omega}} = \frac{1}{M},$$
 (37.11)

en donde $c=\sqrt{(\kappa p/\rho)}$ es la velocidad del sonido y $M\equiv v/c\approx v_\phi/c$ es el número de Mach del gas en el disco de acreción. De la ec.(37.11) se ve que cuando el flujo es altamente supersónico (i.e. $M\gg 1$) entonces el disco es un disco delgado. Físicamente esto quiere decir que los gradientes de presión no son lo suficientemente grandes como para que el disco se haga "gordo". Los discos de acreción alrededor de estrellas suelen obedecer las propiedades de discos delgados. Por esta razón en lo que resta de esta sección nos dedicaremos al estudio de discos de acreción delgados.

En el caso de un fluido ideal (i.e. un fluido donde no existe disipación por viscosidad o calor) no-relativista, la ecuación de movimiento del fluido está dada por la ecuación de Euler, ec.(23.3). Esta ecuación puede transformarse a una forma de ecuación de conservación con ayuda de la ecuación de continuidad, ec.(23.2). En efecto, utilizando las ecs.(23.3)-(23.3) se obtiene que $\partial(\rho v_{\mu})/\partial t = \rho \partial v_{\mu}/\partial t + v_{\mu}\partial \rho/\partial t = -\rho v_{\nu}\partial v_{\mu}/\partial x_{\nu} - \partial p/\partial x_{\mu} - v_{\mu}\partial(\rho v_{\nu})/\partial x_{\nu}$ con lo cual

$$\frac{\partial \rho v_{\mu}}{\partial t} + \frac{\partial \Pi_{\mu\nu}}{\partial x_{\nu}} = 0, \tag{37.12}$$

en donde $\Pi_{\mu\nu}$ es el tensor de densidad de flujo de momento y está dado por †

$$\frac{\partial}{\partial t} \int \rho v_{\mu} dV = -\int \frac{\partial \Pi_{\mu\nu}}{\partial x_{\nu}} dV = -\oint \Pi_{\mu\nu} da_{\nu}. \tag{37.13}$$

 $^{^{\}dagger}$ Para entender el significado del tensor $\Pi_{\mu\nu}$ integremos a la ec.(37.12) sobre un volumen y apliquemos el teorema de la divergencia, obteniendo así

$$\Pi_{\mu\nu} \equiv \rho v_{\mu} v_{\nu} + p \delta_{\mu\nu}. \tag{37.15}$$

Otra forma de obtener la ec.(37.14) es utilizando las componentes espaciales de la ec.(20.6) y tomar los límites Newtonianos cuando $c \to 0$ como se muestran en la ec.(23.1).

Cuando la viscosidad juega un papel importante en el movimiento de un fluido es necesario modificar el tensor de flujo de momento $\Pi_{\mu\nu}$, dado por la ec.(37.15), por el tensor $\Pi_{\mu\nu} = p\delta_{\mu\nu} + \rho v_{\mu}v_{\nu} - \sigma'_{\mu\nu} = -\sigma_{\mu\nu} + \rho v_{\mu}v_{\nu}$, en donde $\sigma_{\mu\nu} = -p\delta_{\mu\nu} + \sigma'_{\mu\nu}$ es el tensor de esfuerzos y $\sigma'_{\mu\nu}$ es el tensor de esfuerzos viscoso. En su forma mas general, este tensor está dado por

$$\sigma'_{\mu\nu} = \eta \left(\frac{\partial v_{\mu}}{\partial x_{\nu}} + \frac{\partial v_{\nu}}{\partial x_{\mu}} - \frac{2}{3} \delta_{\mu\nu} \frac{\partial v_{\lambda}}{\partial x_{\lambda}} \right) + \zeta \delta_{\mu\nu} \frac{\partial v_{\mu}}{\partial x_{\mu}}, \tag{37.16}$$

en donde los coeficientes η y ζ no dependen de la velocidad. En la ec.(37.16), η y ζ representan el coeficiente de viscosidad (o viscosidad dinámica) y la segunda viscosidad respectivamente.

Para entender de manera mas simple a la viscosidad, consideremos el siguiente ejemplo de flujo unidimensional. Supongamos que se tiene un fluido unidimensional que se mueve en la dirección e_y y por lo tanto su velocidad está dada por $v=ve_y$. Utilizando la ec.(37.15) y la ec.(37.16) se tiene que el flujo de momento transmitido en la dirección e_x está dado por

$$\Pi = -\eta \frac{\mathrm{d}v}{\mathrm{d}x}.\tag{37.17}$$

En esta ecuación hemos despreciado el término que contiene a la segunda viscosidad debido a que cuando el flujo es incompresible (div v=0) la ecuación de Euler se reduce

El lado izquierdo de la ec.(37.13) representa la taza de cambio de la componente μ -ésima del momento contenido dentro del volumen en consideración. Necesariamente el lado derecho de esta ecuación debe ser la cantidad de momento que fluye hacia afuera a través de la superficie frontera por unidad de tiempo. Así, la cantidad $\Pi_{\mu\nu}d\alpha_{\nu}$ es la μ -ésima componente del momento que fluye a través del elemento de superficie d α . Si escribimos $d\alpha_{\nu}=n_{\nu}d\alpha$, donde \hat{n} es un vector unitario en la dirección del elemento de área d α entonces el vector

$$\Pi_{\mu\nu} \mathbf{n}_{\nu} = \mathbf{p} \mathbf{n}_{\mu} + \rho \mathbf{v}_{\mu} \mathbf{v}_{\nu} \mathbf{n}_{\nu}. \tag{37.14}$$

representa el flujo de la μ -ésima componente del momento por unidad de área. De esta manera el tensor $\Pi_{\mu\nu}$ representa la μ -ésima componente de la cantidad de momento que fluye por unidad de tiempo, por unidad de área perpendicular al eje x_{ν} .

simplemente a la ecuación de Navier-Stokes para fluidos y los cálculos se simplifican de manera considerable.

Consideremos ahora un flujo en dos dimensiones que gira alrededor del eje 0z con una velocidad angular $\Omega=\dot{\phi}$, como el gas que gira alrededor de un objeto condensado formando un disco de acreción. En este caso el tensor de esfuerzos viscoso está dado por los dos primeros términos del lado derecho de la ec.(37.16), con μ , $\nu=1$, 2. Las coordenadas mas apropiadas para describir este flujo son coordenadas polares (r, ϕ) , que están relacionadas con las coordenadas cartesianas mediante las relaciones $x=r\cos\phi$, $y=r\sin\phi$. De esta manera, debido a que la velocidad $v=e_{\mu}dx_{\mu}/dt$, entonces $v_x=v_r\cos\theta-v_{\phi}\sin\phi$ y $v_y=v_r\sin\phi+v_{\phi}\cos\phi$. En el caso de un disco de acreción es claro que se tiene simetría axisimétrica, es decir, todas las cantidades hidrodinámicas se ven iguales para cualquier ángulo ϕ . Por comodidad elijamos entonces $\phi=0$. De aquí se sigue entonces que la componente del tensor de esfuerzo viscoso $\sigma'_{r\phi}=\sigma'_{\phi r}=\sigma'_{xy}|_{\phi=0}$. Esto es debido a que $a_x(\phi=0)=a_r$ y $a_y(\phi=0)=a_{\phi}$ para todo vector $a=a_xe_x+a_ye_y=a_re_r+a_{\phi}e_{\phi}$. Con todo esto y y utilizando la regla de la cadena, el esfuerzo viscoso $\sigma'_{\phi r}$ (i.e. la cantidad de momento en la dirección ϕ por unidad de área por unidad de tiempo transmitida a través de un área ortogonal a e_r debida a las fuerzas viscosas) está dado por

$$\sigma'_{xy}\bigg|_{\varphi=0} = \sigma'_{\varphi r} = \eta \left\{ \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right\} \bigg|_{\varphi=0} = \eta \left\{ -\frac{v_{\varphi}}{r} + \frac{\partial v_{\varphi}}{\partial r} \right\} = \eta r \frac{\partial \Omega}{\partial r}, \quad (37.18)$$

en donde $\Omega \equiv \dot{\phi}$ es la velocidad angular. En el caso en que $\Omega = \text{conts}$, entonces el disco de acreción rota como un cuerpo rígido y por lo tanto no hay transferencia de momento de las partes centrales hacia las partes exteriores del disco.

Consideremos nuevamente un anillo de disco con espesor dr. De esta manera, la torca τ que actúa sobre la sección interna de este anillo localizado a una distancia r está dada por

$$\tau(\mathbf{r}) = 2\pi \mathbf{r} \times \mathbf{Z} \times \mathbf{r} \times \eta \mathbf{r} \frac{\partial \Omega}{\partial \mathbf{r}}.$$
 (37.19)

La torca $\tau(r+dr)$ que actúa sobre la sección externa del área del anillo que se encuentra a una distancia r+dr es

$$\tau(r+dr) \approx \tau(r) + \frac{\partial \tau(r)}{\partial r} dr.$$
 (37.20)

Con esto se sigue que la torca neta que actúa sobre el anillo está dada por

$$\frac{\partial L}{\partial t} = \tau(r + dr) - \tau(r) = 2\pi \eta Z \frac{\partial}{\partial r} \left(r^3 \frac{\partial \Omega}{\partial r} \right) dr, \qquad (37.21)$$

en donde $L=\pi\left\{(r+dr)^2-r^2\right\}\times Z\times \rho v_{\phi}\approx \pi r^2 Z\rho v_{\phi} dr$ es el momento angular del anillo. De aquí que

$$\frac{\partial v_{\varphi}}{\partial t} = \frac{\gamma}{r^2} \frac{\partial}{\partial r} \left\{ r^3 \frac{\partial}{\partial r} \left(\frac{v_{\varphi}}{r} \right) \right\}, \tag{37.22}$$

en donde $v \equiv \eta/\rho$ es la *viscosidad cinemática*. Esta relación es sumamente importante pues implica que la velocidad angular v_{φ} es una función de la posición r, del tiempo t y de la viscosidad cinemática u. Dicho de otra forma, la estructura del disco depende fuertemente de la viscosidad. Para tener una idea cualitativa de la viscosidad cinemática, calculemos el número de Reynolds $R \equiv L^2/\nu T = VL/\nu$, en donde L, T y V son parámetros característicos del problema cuyas dimensiones son de longitud, tiempo y velocidad respectivamente. Cuando $R \sim 1$ entonces la viscosidad juega un papel importante en la descripción dinámica del fluido. Cuando $R\gg 1$, la viscosidad es despreciable (esto sucede claramente para flujo altamente supersónico). Cuando $R \ge 10^3$, el flujo es turbulento. Resulta que para el caso de discos de acreción en astrofísica el número de Reynolds R $\sim 10^{12}$. Este resultado implica que el flujo en un disco de acreción es severamente turbulento. Además, la viscosidad ordinaria que pueda estar asociada a deflexiones de partículas cargadas en el plasma no es la causante de la estructura del disco. De hecho, la existencia de turbulencia en el disco genera una viscosidad turbulenta que básicamente tiene todas las funciones de la viscosidad normal pero el transporte de momento se lleva acabo gracias al movimiento de pequeños vórtices en el plasma. Por si esto no fuera suficiente complicación, es excesivamente probable que exista un campo magnético amarrado al disco de acreción y por lo tanto exista entonces una turbulencia magnetohidrodinámica. De hecho, los estudios llevados hasta ahora parecen indicar que en efecto, la viscosidad producida se debe a una inestabilidad muy particular denominada inestabilidad rotacional magnetohidrodinámica.

En la década de los 1970's, Sunayev y Shakura se dieron cuenta de todas estas compli-

caciones que aparecen en los discos de acreción. Para hacer a un lado tanta complicación con respecto a la viscosidad ellos introdujeron de manera empírica una relación para la viscosidad turbulenta ν que está dada por

$$\nu = \alpha c_s Z, \tag{37.23}$$

en donde c_s es la velocidad del sonido en el plasma y α es una constante de proporcionalidad[†]. Debido a que los pequeños vórtices turbulentos deben tener dimensiones menores al espesor del disco Z y como las velocidades de rotación de los mismos deben ser menores a la velocidad del sonido, entonces a primera aproximación uno espera que $\alpha \leq 1$.

La ventaja de tener un mecanismo para escribir la viscosidad como en la ec.(37.23) es que, como veremos en un momento, se pueden encontrar soluciones analíticas para la estructura de los discos de acreción delgados (i.e. cuando $Z \ll R$, con R el radio del disco). Cuando un disco de acreción delgado es descrito mediante un único parámetro α que obedece a la receta de la ec.(37.23) se dice que el disco es un $disco-\alpha$.

Debido al proceso de acreción existe materia que cae lentamente hacia el objeto central con una velocidad v_r . Si consideramos que la acreción se lleva de manera estacionaria $(\partial/\partial t=0)$ entonces la ecuación de continuidad implica que la taza de acreción $\dot{m}\equiv dm/dt$ es una contante. En efecto, consideremos un anillo del disco de acreción cuyo espesor está dado por $dr=v_rdt$. El volumen de este anillo está dado por $dV=dr\times\int dz\times r\int_0^{2\pi}d\phi$. De aquí que la taza de acreción este dada por

$$\dot{\mathbf{m}} = 2\pi \mathbf{r} v_r \Sigma,\tag{37.24}$$

en donde la densidad superficial Σ (masa por unidad de área) está definida como

$$\Sigma \equiv \int \rho dz. \tag{37.25}$$

Para mostrar que la cantidad in que se muestra en la ec.(37.24) es constante, tomemos la ecuación de continuidad para el caso estacionario e integremosla a lo largo del volumen acotado por el anillo del disco cuyo espesor es dr. De esta manera y como la veloci-

[†]Hoy en día, puede mostrarse que la ec.(37.23) es una consecuencia natural de la turbulencia magnetohidrodinámica.

dad es únicamente radial, entonces al utilizar el teorema de la divergencia se obtiene que $\oint \rho v \cdot d\alpha = \int_1 \rho v_r d\alpha_r - \int_2 \rho v_r d\alpha_r = 0$, en donde $d\alpha_r$ es la superficie del anillo que es ortogonal a la superficie del disco de acreción y los subíndices 1 y 2 etiquetan a las dos superficies del anillo que satisfacen esta propiedad. De aquí se sigue que la cantidad $\rho v_r d\alpha_r$ es una constante para el flujo de acreción. Debido a que $d\alpha_r = dz \times r \int_0^{2\pi} d\varphi$, entonces queda demostrado que la cantidad \dot{m} es una constante.

Calculemos ahora la torca τ que actúa sobre una superficie cilíndrica del disco de acreción a la distancia r del origen. De acuerdo a la ec.(37.19), es claro que la torca sobre esta área está dada por

$$\tau(r) = 2\pi r^3 v \frac{d\Omega}{dr} \int \rho dz = 2\pi r^3 v \Sigma \frac{d\Omega}{dr}.$$
 (37.26)

y la integral es tomada desde la parte inferior del disco hasta su parte superior.

Por otra parte, el momento angular por unidad de tiempo que fluye a través de la superficie perpendicular al radio r está dada por

$$\dot{\mathbf{m}} v_{\varphi} \mathbf{r} = 2\pi \mathbf{r}^3 \Sigma v_{\mathbf{r}} \Omega. \tag{37.27}$$

Si consideramos un anillo de disco de espesor dr entonces el momento angular por unidad de tiempo que fluye a través de la superficie ortogonal al radio r + dr está dado por

$$(\dot{m}v_{\varphi}r)\bigg|_{r+\Delta r} = \left(2\pi r^{3}\Sigma v_{r}\Omega\right)\bigg|_{r+\Delta r} \approx 2\pi r^{3}\Sigma v_{r}\Omega + 2\pi \frac{\partial}{\partial r}\left(r^{3}\Sigma v_{r}\Omega\right)\Delta r. \tag{37.28}$$

De las ecs.(37.27)-(37.28) se sigue que el cambio de momento angular por unidad de tiempo ΔL está dado por

$$\Delta L = (\dot{m} v_{\varphi} r) \bigg|_{r + \Delta r} - \dot{m} v_{\varphi} r = 2\pi \frac{\partial}{\partial r} \left(r^3 \Sigma v_r \Omega \right). \tag{37.29}$$

La torca total que actúa sobre el anillo está dada por $\tau(r + \Delta r) - \tau(r)$. Igualando esto con la ec.(37.29) y utilizando la ec.(37.20), se obtiene que

$$\frac{\mathrm{d}\tau}{\mathrm{dr}} = 2\pi \frac{\mathrm{d}}{\mathrm{dr}} \left(r^3 \Sigma v_r \Omega \right). \tag{37.30}$$

Por lo tanto, y con ayuda de la ec.(37.26) se obtiene que

$$\nu \Sigma \frac{\mathrm{d}\Omega}{\mathrm{dr}} = \Sigma v_{\mathrm{r}}\Omega + \frac{\mathrm{C}}{2\pi \mathrm{r}^{3}},\tag{37.31}$$

en donde C es una constante de integración. Para encontrar el valor de esta constante, notemos que justo en el borde interior del disco, la velocidad de rotación es justamente la velocidad de rotación de la estrella. Como el material en la estrella gira como un cuerpo rígido entonces $d\Omega/dr=0$ justo en la frontera entre el disco y la estrella. De aquí que el valor de la constante C este dado por

$$C = -2\pi \left(r^3 \Sigma v_r \Omega \right) \bigg|_{r_{\star}}, \tag{37.32}$$

en donde r_{\star} representa el radio de la estrella. Justo a esta distancia, como sucede a cualquier otra distancia en el disco, la velocidad de rotación de una partícula de fluido es casi Kepleriana y por lo tanto $\Omega^2 = GM_{\star}/r^3$, con M_{\star} la masa de la estrella central. Con esto y utilizando la ec.(37.24) se obtiene que

$$C = -\dot{m}\sqrt{GM_{\star}r_{\star}},\tag{37.33}$$

y por lo tanto la constante C representa la taza de transferencia de momento angular en la superficie de la estrella.

Sustituyendo la ec.(37.33) en la ec.(37.31) se obtiene que

$$\nu \Sigma = \frac{\dot{m}}{3\pi} \left\{ 1 - \left(\frac{r_{\star}}{r}\right)^{1/2} \right\}. \tag{37.34}$$

Por otra parte, en el caso de fluidos incompresibles (i.e. div v=0 y por lo tanto la ecuación de Navier-Stokes domina la dinámica de los mismos), la taza de disipación de energía $\dot{E}_{\rm cin}$ (pérdida de energía por unidad de tiempo) debida a fuerzas viscosas que actúan en un volumen fijo V de fluido está dada por la integral

$$\dot{\mathsf{E}}_{\mathrm{cin}} = \frac{\partial \mathsf{E}_{\mathrm{cin}}}{\partial \mathsf{t}} = -\frac{1}{2} \int \eta \left(\frac{\partial v_{\mu}}{\partial x_{\nu}} + \frac{\partial v_{\nu}}{\partial x_{\mu}} \right)^{2} \mathsf{d} V = \int \eta \mathsf{d} V r^{2} \left(\frac{\partial \Omega}{\partial r} \right)^{2}. \tag{37.35}$$

Debido a que d $V = rd\phi dz$ para el disco de acreción entonces la luminosidad del disco L es

$$L = -\frac{\partial E_{cin}}{\partial t} = \nu \int_{r_{\star}}^{\infty} \int_{0}^{2\pi} \int \rho r^{2} \left(\frac{d\Omega}{dr}\right)^{2} r dr d\phi dz = 2\pi \nu \int_{r_{\star}}^{\infty} r^{3} \Sigma \left(\frac{d\Omega}{dr}\right)^{2} dr.$$
 (37.36)

Sustituyendo la ec.(37.34) en la ec.(37.36) y teniendo en cuenta que las órbitas de cada partícula de fluido en el disco son Keplerianas se obtiene que

$$L = \frac{3G\dot{m}M_{\star}}{2} \int_{r_{\star}}^{\infty} \left\{ 1 - \left(\frac{r_{\star}}{r}\right)^{1/2} \right\} \frac{dr}{r^{2}} = \frac{G\dot{m}M_{\star}}{2r_{\star}}.$$
 (37.37)

Si suponemos que toda la energía térmica generada por las fuerzas viscosas se pierde debido a fenómenos radiativos, entonces la luminosidad de radiación del disco está dada justamente por la ec.(37.37). El resultado obtenido en la ec.(37.37) es sumamente importante. Una partícula de fluido que es acretada hacia el objeto central pasa por una serie de órbitas Keplerianas, quedando amarrada en cada una de estas. La energía de amarre que necesita la partícula para establecerse en cada una de estas órbitas es justamente la mitad de la energía potencial de la partícula evaluada en el radio correspondiente a la órbita[†]. Entonces la partícula de fluido necesita disipar (mediante radiación) la mitad de su energía potencial para poder establecerse en cada uno de estas órbitas Keplerianas. Esta energía disipada es la fuente de luminosidad en un disco de acreción. Justo cuando la partícula se ha establecido en la superficie de la estrella central, se ha liberado la mitad de su energía gravitacional. Si la partícula de fluido es llevada al reposo en la superficie de la estrella entonces es necesario que la otra mitad de la energía potencial sea liberada totalmente. En otras palabras, la frontera de la estrella es una fuente de luminosidad tan poderosa como el disco de acreción completo.

Consideremos nuevamente el anillo de espesor Δr . De la ec.(37.37) se sigue que la luminosidad producida por este anillo localizado en la posición r está dada por

[†]Esto es claro pues como la energía total de una partícula es $E_{tot} = mv^2/2 - GM_{\star}m/r^2$ y para órbitas Keplerianas, la aceleración centrífuga se balancea con las fuerzas gravitacionales, i.e. $mv^2/r = GM_{\star}m/r^2$. Con esto se obtiene que una partícula en una órbita Kepleriana tiene una energía total $E_{tot} = -GM_{\star}m/2r^2$.

$$L = \frac{3G\dot{m}M_{\star}}{2r^2} \left\{ 1 - \left(\frac{r_{\star}}{r}\right)^{1/2} \right\} \Delta r. \tag{37.38}$$

Esta luminosidad es un poco mas que solo la energía de amarre gravitacional que se produce cuando una partícula de fluido se mueve de la posición $r + \Delta r$ a la posición r. En efecto, utilizando la ec.(26.6) es claro que como d $m = \rho dV$ entonces la taza de energía gravitacional \dot{W} está dada por $\dot{W} = -GM_\star \dot{m}/2r$. De tal manera que la taza de energía de amarre gravitacional evaluada en la posición $r + \Delta r$ está dada por $\approx -GM_\star \dot{m}/2r + GM_\star \dot{m}\Delta r/2r^2$. Con esto se obtiene que la taza de energía de amarre liberada por una partícula al moverse de la posición $r + \Delta r$ a la posición r está dada por $G\dot{m}M_\star\Delta r/r^2$. La diferencia entre esta cantidad y la ec.(37.38) representa la cantidad de momento angular que es transportado de la posición r a la posición $r + \Delta r$.

Con todo esto se sigue que a pesar de que la energía total liberada por una partícula que alcanza el radio de la estrella es la mitad de la energía potencial, la taza de disipación de energía está dada por la taza de perdida de energía debida al transporte de momento angular hacia afuera del disco y a la liberación de energía gravitacional. Para ejemplificar esto, tomemos el límite cuando $r \gg r_{\star}$ en la ec.(37.38) para obtener así

$$L(r) = \frac{3G\dot{m}M_{\star}}{2r^2}\Delta r. \tag{37.39}$$

Esta cantidad es tres veces la taza de energía necesaria para amarrar a una partícula que se desplaza de $r + \Delta r$ a la posición r.

Lo mas importante en toda la discusión para discos- α es que la luminosidad no depende de la viscosidad ν . Este hecho es justamente lo que da belleza al modelo propuesto por Sunayev y Shakura.

Capítulo VI

Relatividad General

Bajo ciertas circunstancias es necesario que los efectos relativistas deban ser tomados en cuenta en el estudio de fenómenos gravitacionales. Esto sucede cuando los campos gravitacionales son capaces de acelerar a partículas de prueba a velocidades cercanas a la de la luz. En efecto, consideremos una masa de prueba m que orbita alrededor de una masa central M. En gravitación Newtoniana esto significa que la fuerza centrífuga mv^2/r debe ser igual a la fuerza gravitacional GMm/r^2 . Aquí, r representa la distancia entre las dos masas y v es la velocidad azimutal de la partícula de prueba alrededor de la masa M. Los efectos relativistas en el campo gravitacional deben ser tomados en cuenta cuando $v \approx c$, o bien cuando $GM/rc^2 \approx 1$. Definamos el parámetro gravitacional $\chi \equiv 2GM/rc^2$. De esta manera, cualquier fenómeno gravitacional que satisfaga la condición de que $\chi \approx 1$, requiere de una teoría relativista de la gravitación para su descripción. El parámetro gravitacional tiene los siguientes valores para distintos objetos astronómicos:

- (I) Superficie terrestre: $\chi_{\text{tierra}} \approx 1.4 \times 10^{-18}$.
- (II) Superficie del sol: $\chi_{\odot}=4\times10^{-6}.$
- (III) Superficie de enana blanca: $\chi_{\rm EB} \approx 5 \times 10^{-4}$.
- (IV) Superficie de estrella de neutrones: $\chi_{EN} \approx 0.3$.
- (v) El universo como un todo: $\chi_U \approx 0.1 1$.

Esto muestra que el campo gravitacional alrededor de ciertos objetos compactos requiere de una descripción relativista. La teoría relativista de la gravedad fue diseñada de manera teórica por el gran intelecto de Albert Einstein en 1915 y es muy probablemente la teoría mas bella de todas las teorías físicas. Ya que el estudio de esta teoría relativista es extenso, solamente nos concentraremos en los principios básicos de la misma y daremos por hecho una buena parte de sus resultados para poder aplicarlos a ciertos objetos astronómicos.

§38. Experimentos de Eötvos, Dicke y Braginsky

La ley de Newton de movimiento establece que la fuerza f es una función que depende de la posición, las velocidades y el tiempo. Esta fuerza es proporcional a la aceleración a a través de una constante que caracteriza al cuerpo llamada la masa m

$$ma = f. (38.1)$$

Por otra parte, la ley de Newton de gravitación universal nos dice que la relación funcional (el lado derecho de la ec.(38.1)) de la fuerza, producida por dos masas m_1 y m_2 y que actúa sobre la primera, está dada por

$$f = -G \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|} (\mathbf{r}_2 - \mathbf{r}_1),$$
 (38.2)

donde r_1 y r_2 son los radio vectores de las masas correspondientes.

En principio, las masas m, m_1 y m_2 son cosas completamente diferentes. De acuerdo con la ley de Newton de movimiento m es la masa inercial de la partícula que se acelera y funciona como una resistencia a esta aceleración. Recuerda que la masa inercial se define como el cociente de la norma de la fuerza entre la aceleración que la fuerza proporciona a la partícula. Por otra parte, las masas que aparecen en la ley de Newton de la gravitación se llaman masas gravitacionales y su función es que dan la respuesta correcta al valor de la fuerza gravitacional producida por su presencia. Es bueno pensar en estas como unas cargas gravitacionales, en analogía con las cargas eléctricas y la ley de Coulomb.

En la ley de Newton de gravitación aparecen las masas de manera bastante simétrica. En efecto, la masa pasiva $m_2(p)$, funciona como un potencial gravitacional de la masa activa $m_1(\alpha)$. Este potencial le dice a la masa $m_1(\alpha)$ como moverse. Análogamente, si consideramos a la masa $m_1(p)$ como la masa pasiva, entonces esta misma funciona como un potencial gravitacional que le dice a la masa activa $m_2(\alpha)$ como moverse. La ley de Newton de movimiento implica que las masas pasiva y activa son proporcionales una a la otra ya que la fuerza de la primera en la segunda debe ser el negativo de la fuerza producida por la segunda en la primera. En efecto, la ley de Newton implica que $f_{12} = -f_{21}$. Esto significa que $Gm_1(\alpha)m_2(p)/r^2 = Gm_1(p)m_2(p)/r^2$, donde r es la distancia que separa a ambas masas. De aquí se sigue que

$$\frac{\mathfrak{m}_1(\mathfrak{a})}{\mathfrak{m}_2(\mathfrak{a})} = \frac{\mathfrak{m}_1(\mathfrak{p})}{\mathfrak{m}_2(\mathfrak{p})}.$$

La relación entre la masa gravitacional y la masa inercial tiene que ser encontrada mediante el experimento. Por ejemplo, consideremos un péndulo que bajo la acción de la gravedad se mueve. Para un ángulo de apertura θ pequeño, la fuerza que acelera al péndulo es $-m_g g \sin \theta \approx -m_g g \theta$, donde m_g es la masa inercial y g es la aceleración de la gravedad en la superficie de la tierra. Ahora bien, de acuerdo a la ley de Newton de movimiento, la fuerza es el producto de la masa inercial m_i multiplicado por $d^2(l\theta)/dt^2$, donde l es la longitud del hilo que cuelga del péndulo. De tal forma que podemos escribir la ecuación de movimiento del péndulo como

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = -\left(\frac{\mathrm{m_g}}{\mathrm{m_i}}\right)\left(\frac{\mathrm{g}}{\mathrm{l}}\right)\theta. \tag{38.3}$$

La frecuencia angular del péndulo ω está entonces dada por $\omega^2=(m_g/m_i)(g/l)$, de tal manera que péndulos de distinta masa e igual dimensión (longitud) oscilan con el mismo periodo si $m_g \propto m_i$. Newton realizó este experimento y encontró evidencia para esta proporcionalidad con una precisión de una parte en 1000.

Experimentos mas recientes hechos por el Barón de Eötvos en los 1880's mostraron la proporcionalidad de ambas masas con resultados mas precisos. Sus experimentos consistieron en ver si existía movimiento alguno en una balanza de torsión debido a algún desequilibrio entre la fuerza centrífuga experimentada por una masa inercial en la superficie de la tierra mientras esta rota. La rotación de esta masa es debida a la rotación natural de la tierra y la fuerza gravitacional que actúa sobre esta gracias a la gravedad de la tierra.

En la década de los 1960's, Dicke y colaboradores utilizaron al sol en vez de la tierra y a la fuerza centrífuga producida por el movimiento de la tierra alrededor del sol. Braginsky y Panov en los 1970's encontraron aún mejores resultados que Dicke y establecieron la linearidad entre la masa inercial y la masa gravitacional con una precisión mejor a una parte en 10¹².

De estos experimentos se sigue entonces que la proporcionalidad de la masa inercial y gravitacional. El resultado clave es identificar ambas masas como iguales. Esto es lo que da origen al principio principio de equivalencia formulado por Einstein.

§39. Principio de equivalencia

La propiedad mas importante de los campos gravitacionales es que cuerpos de distintas masas se mueven de la misma manera bajo la influencia del mismo campo gravitacional. Esto no es de extrañarse, pues dos cuerpos de distintas masas caen con la misma aceleración al suelo en la tierra. Experimentos de este estilo y muy rudimentarios fueron hechos por Galileo. Se dice que Galileo utilizó la torre inclinada de Pisa para mostrar que cuerpos de masas distintas que dejan el reposo caen en el mismo tiempo al suelo de la tierra.

Esta propiedad de los campos de gravedad permite la posibilidad de establecer una analogía entre el movimiento de un cuerpo en un campo gravitacional y el movimiento de un cuerpo localizado fuera de un campo gravitacional pero en un sistema de referencia no-inercial. De esta manera las propiedades del movimiento de un cuerpo en un sistema de referencia no-inercial y uno inercial con un campo de gravedad, son los mismos. Esta equivalencia entre campos de gravedad y sistemas de referencia no-inerciales se denomina principio de equivalencia y fue formulado por Einstein en 1915.

Un cuerpo que se mueve libremente en un sistema de referencia inercial sobre el cual actúa un campo gravitacional es acelerado en una dirección debido a la fuerza que le imparte el campo gravitacional. El mismo comportamiento del cuerpo puede obtenerse en un sistema de referencia no-inercial que tiene una aceleración en la misma dirección que el campo gravitacional original.

Existe una diferencia fundamental entre los sistemas de referencia no—inerciales y los campos gravitacionales que actúan sobre sistemas de referencia inerciales. A una distancia infinita de los cuerpos que producen el campo gravitacional, el valor del campo gravitacional

tiende a desvanecerse. Sin embargo, los sistemas de referencia no-inerciales equivalentes a los campos de gravedad incrementan el valor de su aceleración de manera ilimitada a medida que se aproximan a infinito. Este es el caso de un movimiento circular alrededor de un eje. La aceleración centrífuga diverge a una distancia infinita del eje de rotación. Por otra parte, en el caso de un movimiento acelerado uniforme, la aceleración no diverge en infinito, sino que permanece constante.

Debido a estos argumentos, es posible eliminar un "campo gravitacional" producido por la aceleración de un sistema de referencia no-inercial. Basta con hacer una transformación de sistema de coordenadas de manera apropiada. Sin embargo, un campo gravitacional actual (como el que produce una masa puntual descrito por la ley de Newton de gravitación) no puede hacerse desaparecer globalmente mediante una transformación de coordenadas. Lo mejor que se puede hacer es eliminar el campo gravitacional en una región suficientemente pequeña alrededor de un determinado punto en el espacio mediante la elección de un sistema de referencia no-inercial. Este último sistema no-inercial se escoge de tal manera que debe acelerarse en magnitud y en dirección a la aceleración producida por el campo gravitacional[†].

Matemáticamente la equivalencia entre los campos gravitacionales y la aceleración se debe a que la ecuación de movimiento que se obtiene a partir del Lagrangiano $L = mv^2/2 - m\phi$ de una partícula libre moviéndose en un campo de gravitación está dada por

$$\dot{v} = -\text{ grad } \Phi. \tag{39.2}$$

Esta última relación no involucra a la masa m de la partícula en cuestión.

$$d^2 r_{\mu}/dt^2 = R_{\mu\nu} r_{\nu} \tag{39.1}$$

donde $R_{\mu\nu} = \text{diag}(-GM/r^3, -GM/r^3, -GM/r^3)$ y M es la masa total del sistema.

[†]Cabe hacer notar que existen efectos gravitacionales como la fuerza de marea que no puede eliminarse ni siquiera bajo la elección de este sistema de referencia no-inercial. Por ejemplo, puede mostrarse (¡hazlo!) que dos partículas que son dejadas en libertad a partir del reposo y cuya separación inicial está dada por el vector r, cumplen con

§40. Gravitación y espacios curvos

Analicemos ahora la manera de describir el espacio-tiempo de un campo gravitacional. Consideremos un sistema de referencia inercial S descrito por $ds^2 = c^2dt^2 - dl^2$. Desde otro sistema de referencia inercial S' el intervalo ds' es tal que ds = ds'. Esta propiedad muestra matemáticamente el principio de relatividad de Einstein. Si ahora transformamos el sistema de referencia inercial S a uno S' que rota con velocidad angular constante Ω a lo largo del eje z de tal forma que

$$x = x' \cos \Omega t - y' \cos \Omega t,$$
 $y = x' \sin \Omega t + y' \cos \Omega t,$ $z = z',$ (40.1)

entonces el intervalo en el sistema S' se puede escribir como

$$ds^2 = \left\{c^2 - \Omega^2(x'^2 + y'^2)\right\}dt^2 - dx^2 - dy^2 - dz'^2 + 2\Omega y' dx' dt - 2\Omega x' dy' dt. \tag{40.2}$$

Tarea 13

Demuestra la ecuación eq.(40.2)

Esta relación muestra que el cuadrado del intervalo aparece como una cuadrática de forma general en las diferenciales de las coordenadas. Así pues, podemos decir que el intervalo en su forma mas general toma la forma

$$ds^2 = g_{ik}dx^idx^k. (40.3)$$

Las cantidades g_{ik} representan la m'etrica del espacio-tiempo y son escogidas de manera sim\'etrica (i.e. $g_{ik} = g_{ki}$) debido a la simetría de la ec.(40.3). Es claro también que g_{ik} es un tensor pues $dx^k dx^i$ es un tensor y ds un escalar. Por esta razón se denomina frecuentemente a la métrica del espacio tiempo como el tensor métrico. La propiedad innata que posee el tensor métrico es que al transformar de un sistema de referencia cualquiera a uno inercial, las componentes de este tensor están dadas por $g_{ik} = diag(1, -1, -1, -1)$. Es decir, cuando las coordenadas utilizadas corresponden a las de un espacio plano, $x^0 = ct$, $x^1 = x$, $x^2 = y$, $x^3 = z$, la métrica es justamente la

métrica del espacio de Minkowski. Un cuatro-espacio con esta última métrica se denomina galileano. El tensor métrico en su forma general, no puede ser llevado a su forma galileana para todo el espacio mediante una transformación de coordenadas. Esto muestra que los campos gravitacionales no pueden ser eliminados totalmente por una transformación de coordenadas o lo que es igual, mediante la elección de un sistema de referencia adecuado como habíamos mencionado anteriormente.

Los cuatro-espacios determinados por la ec. (40.3) se denominan curvos, a diferencia de sus contrapartes galileanos que frecuentemente se dicen planos. Para aclarar el significado de estos términos consideremos lo que sucede al transformar un sistema de referencia inercial K a uno no-inercial K' que rota con respecto al eje z con velocidad angular constante. Consideremos una circunferencia C dibujada en el plano Oxy, cuyo origen es atravesado por el eje z. En el sistema K, el cociente de la circunferencia del circulo entre su diámetro es una constante que es igual a π . Sin embargo, en el sistema que rota, un pedacito de circunferencia sobre el circulo recibe una contracción de Lorentz. De esta manera, al sumar todos los pedacitos de circunferencia en el sistema K' se obtiene una circunferencia menor a la medida en el sistema K. Por tanto la razón de la circunferencia al diámetro (que no sufre una contracción de Lorentz) es menor a π . En otras palabras, es como si el circulo hubiese sido dibujado sobre una superficie del tipo de una silla de montar para la cual, la curvatura es negativa. Por otra parte, si la razón entre diámetro y circunferencia hubiese sido mayor a π , podríamos pensar que el circulo estuviese dibujado en un espacio como el de una esfera, donde la curvatura es positiva.

Cuando el tensor g_{ik} es llevado a su forma diagonal (i.e. $g_{ik} = 0$ para $i \neq k$), se obtiene que tres de los elementos diagonales son negativos y uno positivo. En otras palabras, el signo de la métrica es (+, -, -, -). De aquí se obtiene que el determinante g de la matriz formada por las componentes del tensor g_{ik} es negativo para un espacio-tiempo verdadero

$$g < 0.$$
 (40.4)

El estudio de la gravitación relativista, o relatividad general -como el mismo Einstein bautizó a su teoría- impone cambios drásticos en la concepción del espacio-tiempo, dis-

 $^{^{\}dagger}$ Si la la métrica en el espacio-tiempo de Minkowski hubiese sido escogida como $g_{ik}=$ diag (-1,+1,+1,+1) entonces el signo de la métrica en un espacio curvo sería (-,+,+,+) y por lo tanto la desigualdad de la ec.(40.4) estaría invertida.

tintas a lo que estamos acostumbrados. Justamente el estudio de espacios curvos y sus conexiones con la gravitación representa el estudio de la teoría de la relatividad general.

§41. Corrimiento al rojo gravitacional

Consideremos el elevador de Einstein, i.e. un elevador común y corriente que es acelerado hacia abajo debido a la presencia de un campo gravitacional como se muestra en la fig.(VI.1). La aceleración de este elevador es g. Utilizando el principio de equivalencia, esta situación es equivalente a que el elevador sea acelerado hacia arriba con una aceleración $\mathbf{a} = -\mathbf{g}$ en ausencia de campos gravitacionales. Con esto, la fuerza que se ejerce sobre cualquier persona dentro del elevador es idéntica a la fuerza gravitacional que produce el campo gravitacional g. Un rayo de luz con frecuencia \mathbf{v} se propaga desde el techo hasta el suelo del elevador. El tiempo t que tarda el haz de luz en recorrer el elevador está dado por $\mathbf{t} = \mathbf{h}/\mathbf{c}$, donde h es la altura del elevador. En este tiempo, el suelo del elevador se acelera a una velocidad $\mathbf{v} \approx \mathbf{at} = \mathbf{gt} = \mathbf{gh/c}$. De aquí que la frecuencia $\mathbf{v}_{\rm obs}$ del fotón que llega al suelo esté dada por

$$\nu_{\rm obs} \approx \nu_{\rm em} \left(1 + \frac{v}{c} \right) = \nu_{\rm em} \left(1 + \frac{gh}{c^2} \right),$$
(41.1)

de acuerdo al efecto Doppler. Como $g=-\Delta \varphi/h$, donde φ es el potencial gravitacional, entonces

$$\nu_{\text{obs}} = \nu_{\text{em}} \left(1 - \frac{\Delta \phi}{c^2} \right). \tag{41.2}$$

En términos del corrimiento al rojo gravitacional z, la ec.(41.2) queda como

$$z = \frac{\lambda_{
m obs} - \lambda_{
m em}}{\lambda e m} = \frac{\nu_{
m em} - \nu_{
m obs}}{\nu_{
m obs}} \approxeq \frac{\Delta \phi}{c^2},$$
 cuando $\Delta \phi/c^2 \ll 1.$ (41.3)

Esto significa que la frecuencia de las ondas electromagnéticas depende del campo gravitacional[†].

[†]Sir Arthur Eddington en la década de los 1920's calculó que las líneas de la enana blanca Sirius B (cf. sección §31) deberían de tener un corrimiento al rojo de $20 \,\mathrm{km/s}$ –utilizando la ec.(41.1) se obtiene que zc = v, razón por la que en ocasiones el corrimiento al rojo se mide en distancia sobre tiempo. Poco después, Adams midió que el corrimiento al rojo de las líneas era de $19 \,\mathrm{km/s}$.

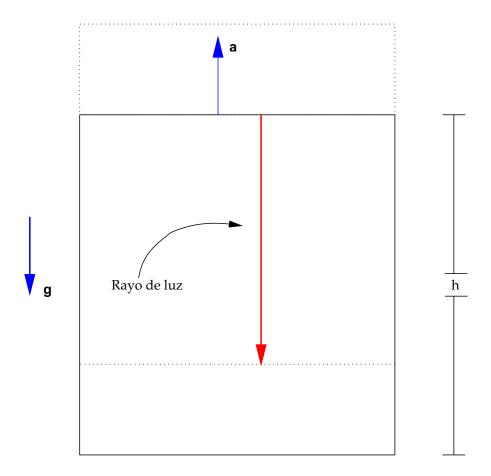


Figura VI.1: Un elevador (el elevador de Einstein) es dejado en caída libre y por lo tanto la gravedad le produce una una aceleración ${\bf g}$ hacia abajo. Esto es equivalente a que el elevador se acelere hacia arriba con una aceleración ${\bf a}=-{\bf g}$ en ausencia de campos gravitacionales. Un rayo de luz tarda un tiempo h/c en recorrer la distancia del techo al piso del elevador. Debido a que el piso se mueve hacia el rayo de luz (gracias a la aceleración que este tiene hacia arriba), esto produce un corrimiento al rojo en la frecuencia del fotón cuando llega al suelo.

En términos del periodo $\Delta t = 1/\nu$, la ec.(41.1) toma la forma

$$\Delta t_{\text{em}} = \Delta t_{\text{obs}} \left(1 + \frac{\Delta \varphi}{c^2} \right). \tag{41.4}$$

Esta relación representa la dilación del tiempo que se obtiene entre dos puntos del espaciotiempo bajo la influencia de un campo gravitacional. Nota que esta dilación no se da entre

dos sistemas de referencia como sucede en relatividad especial. Esta dilación se refiere a dos puntos del espacio-tiempo con respecto a un mismo sistema de referencia. Como veremos mas adelante, esta expresión es justamente la dilación del tiempo que se obtiene entre cualesquiera dos puntos del espacio tiempo cuando $\Delta \phi/c^2 \ll 1$. Por lo tanto, un intervalo de tiempo dt' está dado por

$$dt' = dt \left(1 + \frac{\Delta \phi}{c^2} \right). \tag{41.5}$$

Supongamos ahora que dt es un intervalo de tiempo medido en infinito, en donde el campo gravitacional $\phi=0$ (recuerda que todo campo físico se anula en ∞). Con esto y debido a que $\phi/c^2\ll 1$, el intervalo de tiempo dt' medido en cualquier punto del espacio está dado por

$$dt'^2 = dt^2 \left(1 + \frac{\phi}{c^2}\right)^2 \approx dt^2 \left(1 + \frac{2\phi}{c^2}\right). \tag{41.6}$$

De esta manera, el intervalo $ds^2=c^2dt'^2-dl^2$ para la métrica del espacio de Minkowski está dado por

$$ds^{2} = dt^{2} \left(1 - \frac{2\phi}{c^{2}} \right) - dl^{2} = dt^{2} \left(1 - \frac{2GM}{c^{2}r} \right) - dl^{2}, \tag{41.7}$$

en donde hemos escrito al potencial gravitacional $\phi = -GM/r$. Es importante remarcar que la métrica de la ec.(41.7) es válida únicamente cuando $\phi/c^2 \ll 1$. Dicho de otro modo, esta métrica es la primera corrección a la métrica del espacio-tiempo de Minkowski. A este orden de aproximación, la corrección ocurre únicamente en la componente g_{00} del tensor métrico.

§42. Deflexión de rayos de luz

En la sección anterior mostramos que la componente temporal dt de la métrica de Minkowski necesariamente debe cambiarse al incluir campos gravitacionales. En esta sección mostraremos también que la componente espacial dl de la métrica debe cambiarse cuando existe un campo gravitacional. Para esto consideremos nuevamente el elevador de Einstein que se encuentra en caída libre bajo la acción de un campo gravitacional g. Es-

ta situación es equivalente a considerar un elevador que se acelera con una aceleración a=-g. De una de las paredes del elevador se emite un rayo de luz como se muestra en la fig.(VI.2). Si la aceleración es pequeña, i.e. $\Delta \varphi/c^2 \ll 1$, entonces la distancia d=AB recorrida por un fotón, que es aproximadamente una parábola, puede ser aproximada por un segmento de circunferencia cuyo radio de curvatura es \Re . Además, debido a que el segmento $DB=gt^2/2$ entonces $\tan(\theta/2)\sim\theta/2\sim gt^2/2l$. Por otra parte, como $d^2\approx AB^2+l^2$ y como el radio de curvatura $\Re\theta=d$ entonces

$$\Re^2 = \frac{d^2}{\theta^2} = \frac{1}{4}l^2 + \frac{l^2}{q^2t^4}.$$
 (42.1)

Debido a que $gt^2/2 \ll l$ y como l = ct entonces la ec.(42.1) toma la forma

$$\mathfrak{R} = \frac{l^2}{gt^2} = \frac{c^2}{g}.\tag{42.2}$$

La ec.(42.2) significa que la curvatura de los rayos de luz depende del valor de la aceleración local gravitacional g. Debido a que $g = -\nabla \phi$, con ϕ el potencial gravitacional, es claro entonces que la curvatura de los rayos de luz depende de la distribución de las masas en el espacio. En otras palabras, "¡las masas le dicen al espacio como curvarse!"

Los ejemplos de las figs. (VI.1)-(VI.2) muestran que el espacio y el tiempo son "curvados" cuando los efectos relativistas son incluidos en los campos gravitacionales.

§43. Vectores y tensores en espacios curvos

Para continuar con el estudio de la relatividad general es necesario que formulemos un lenguaje tensorial adecuado a espacios curvos de cuatro dimensiones. Esto es considerablemente mas difícil que su contraparte pseudo—euclidiano.

El objeto geométrico que describe a un espacio-tiempo de cuatro dimensiones es una $variedad^{\dagger}$. Dado un sistema de coordenadas (un sistema de referencia), cada punto P

[†]Una variedad de dimensión n es un objeto geométrico que localmente se ve como \mathbb{R}^n . En otras palabras, es posible aproximar cualquier región suficientemente pequeña alrededor de un punto cualquiera P sobre la variedad mediante un plano tangente de dimensión n. La 2-esfera es uno de los ejemplos mas sencillos de una variedad. Localmente se ve como \mathbb{R}^2 . Esto fue lo que llevó a los Europeos el creer que la tierra era plana. La razón por la cual se necesitan variedades para el estudio de la relatividad general es debido al principio de equivalencia. Dado un punto P del espacio-tiempo existe un sistema de referencia

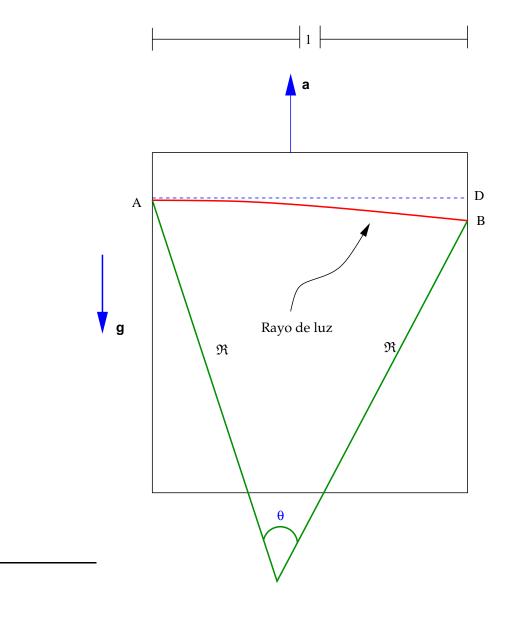


Figura VI.2: El elevador de Einstein cae libremente con una aceleración ${\bf g}$ debido a la influencia de un campo gravitacional. Esta situación es equivalente a que el elevador se acelere hacia arriba con una aceleración ${\bf a}=-{\bf g}$ en ausencia de campos gravitacionales. En el punto A de la pared izquierda se emite un rayo de luz que tiempo mas tarde es detectado en la pared derecha en el punto B. Es claro que el rayo de luz sufre una deflexión debido al movimiento que produce la aceleración ${\bf a}$. En la figura se muestra el radio de curvatura ${\mathfrak R}$ del segmento AB.

⁽sistema de coordenada) mediante el cual se puede eliminar el campo gravitacional en una vecindad de este punto P. Este sistema de coordenadas corresponde a un espacio—tiempo de Minkowski.

sobre la variedad queda representado mediante las coordenadas $x^k = (x^0, x^1, x^2, x^3)$. Este mismo punto P puede ser descrito mediante otro sistema coordenado (otro sistema de referencia) x'^k . La relación entre las coordenadas de ambos sistemas de referencia está dada por la transformación

$$x^k = f^k(x'_0, x'_1, x'_2, x'_3),$$
 (43.1)

en donde f^k es una función que depende de las coordenadas x'^k . La diferencial de las coordenadas dx^k está relacionada con la diferencial dx'^k mediante la regla de la cadena

$$dx^{k} = \frac{\partial x^{k}}{\partial x'^{m}} dx'^{k}. \tag{43.2}$$

Se dice que un conjunto de cuatro cantidades A^k es un *vector contravariante* si sus componentes se transforman como las componentes de las diferenciales (cf. ec.(43.2)), es decir,

$$A^{k} = \frac{\partial x^{k}}{\partial x'^{m}} A'^{m}. \tag{43.3}$$

La derivada $\partial/\partial x^k$ con respecto a las coordenadas (el *gradiente*) se transforma de un sistema de coordenadas a otro de acuerdo a la regla de la cadena

$$\frac{\partial}{\partial x^k} = \frac{\partial x'^l}{\partial x^k} \frac{\partial}{\partial x'^l}.$$
 (43.4)

Un conjunto de cuatro cantidades A_k forman un *vector covariante* si sus componentes se transforman como las componentes de las derivadas de las coordenadas (cf. ec.(43.4)), es decir,

$$A_{k} = \frac{\partial x'^{l}}{\partial x^{k}} A'_{l}. \tag{43.5}$$

Con estas definiciones es claro que las coordenadas x^k no representan ni un vector covariante, ni uno contravariante. Simplemente funcionan como etiquetas para cada punto en el espacio-tiempo.

Un tensor contravariante M^{ik} de rango 2 es un conjunto de 16 cantidades que se transforman como el producto de dos vectores contravariantes, es decir,

$$M^{ik} = \frac{\partial x^i}{\partial x'^l} \frac{\partial x^k}{\partial x'^m} M'^{lm}.$$
 (43.6)

Análogamente, un tensor covariante M_{ik} de rango 2 es un conjunto de 16 cantidades que se transforman como el producto de dos vectores covariantes. Dicho de otro modo,

$$M_{ik} = \frac{\partial x^{\prime l}}{\partial x^{i}} \frac{\partial x^{\prime m}}{\partial x^{k}} M_{lm}.$$
 (43.7)

Un tensor Π^{i}_{k} de rango 2 mixto se transforma como los productos de un vector covariante por un vector contravariante, es decir,

$$\Pi^{i}_{k} = \frac{\partial x^{i}}{\partial x^{\prime l}} \frac{\partial x^{\prime m}}{\partial x^{k}} \Pi^{\prime l}_{m}. \tag{43.8}$$

De manera totalmente análoga es posible definir tensores de mas alto rango. Basta recordar que este tensor, en cualquier índice superior se transforma como las coordenadas de un vector contravariante. Las componentes de cualquier índice inferior se transforman como las componentes de un tensor covariante.

Un tensor A^{ik} de rango 2 es simétrico si $A^{ik} = A^{ki}$. En términos de sus componentes mixtas esto es $A^i{}_k = A_i{}^k$. Por esta razón, en lo sucesivo escribiremos simplemente $A^i{}_k$ a todo tensor de rango 2 simétrico. Un tensor M^{ik} de rango 2 es antisimétrico si $M^{ik} = -M^{ik}$. Claramente, las componentes con índices repetidos en un tensor antisimétrico son nulas, i.e. $M^{00} = M^{11} = M^{22} = M^{33} = 0$.

El producto escalar de dos vectores a^i y b^k es una cantidad invariante pues

$$a^{i}b_{i} = \frac{\partial x^{i}}{\partial x'^{k}} \frac{\partial x'^{l}}{\partial x^{i}} a'^{k}b'_{l} = \frac{\partial x'^{l}}{\partial x'^{k}} a'^{k}b'_{l} = \delta^{l}_{k} a'^{k}b'_{l} = a'^{m}b'_{m}, \tag{43.9}$$

en donde δ_l^k es la delta de Kronecker o el tensor unitario de rango 1 que tiene un valor de 1 cuando k=l. En cualquier otro caso, el valor de la delta de Kronecker es cero. Con esta definición es claro que δ_k^i tiene el mismo valor en cualquier sistema de referencia.

La delta de Kronecker satisface la propiedad

$$A^{k} = \delta^{k}_{l} A^{l}. \tag{43.10}$$

Esta relación significa que el producto del vector A^1 con δ_1^k es igual a un cuatro-vector A^k .

Esto muestra que la delta de Kronecker es un tensor.

El intervalo de dado por la ec.(40.3) es un escalar. Debido a que dx^k es un vector, entonces las cantidades $g_{ik} = g_{ki}$ forman un tensor de rango 2 que se denomina el tensor métrico. En ocasiones uno abusa del lenguaje y denomina a g_{ik} como la métrica del espacio-tiempo.

Dos tensores de rango 2, Aik y Bik son recíprocos el uno al otro si

$$A_{ik}B^{kl} = \delta_1^i. \tag{43.11}$$

Particularmente, el tensor métrico gik es reciproco a si mismo, es decir,

$$g_{kl} g^{lm} = \delta_k^m. \tag{43.12}$$

De aquí que para convertir un vector contravariante a uno covariante y a la inversa, se realice la operación

$$a^{i} = g^{ik}a_{k}, \qquad b_{l} = g_{lm}b^{m}.$$
 (43.13)

Subir y bajar índices es entonces una operación de contracción como la mostrada en la ec.(43.13). Por ejemplo, es claro que para cualquier tensor Π^{abcd} de rango 4 la siguiente igualdad es cierta: $\Pi_a{}^{bc}{}_d = g^{bm}\Pi_{am}{}^c{}_d$. Además, la ec.(43.13) indica que $g^a{}_b = g_{mb}g^{am} = g_{bm}g^{ma} = \delta^a_b$, es decir, el tensor mixto g^a_b corresponde a la delta de Kronecker δ^a_b .

En un sistema galileano de coordenadas (un sistema de referencia inercial) el tensor métrico toma la forma $g_{ik} = g^{ik} = diag(1, -1, -1, -1)$. Localmente, en una vecindad alrededor de cualquier punto P del espacio-tiempo, es siempre posible llevar a la métrica (encontrar un sistema coordenado) a su forma galileana.

Consideremos ahora el pseudo-tensor unitario de rango uno (el tensor de Levi-Civita) e^{abcd} en un espacio galileano (cf. sección §14). Transformemos ahora este tensor a un sistema de referencia (espacio curvo) cualquiera y denotémoslo en este espacio como E^{abcd} . Supongamos que las coordenadas χ'^k etiquetan a los puntos del espacio galileano y que las coordenadas χ^k representan los puntos del espacio curvo. Con esto, la relación entre los tensores E^{abcd} y e^{abcd} está dada por

$$\mathsf{E}^{abcd} = \frac{\partial x^a}{\partial x'^p} \frac{\partial x^b}{\partial x'^r} \frac{\partial x^c}{\partial x'^s} \frac{\partial x^d}{\partial x'^t} \epsilon^{prst} \tag{43.14}$$

Con ayuda de la ec.(14.15), la ec.(43.14) queda como

$$\mathsf{E}^{\mathrm{abcd}} = \mathsf{J} \varepsilon^{\mathrm{abcd}},\tag{43.15}$$

en donde

$$J = \frac{\partial(x^0, x^1, x^2, x^3)}{\partial(x'^0, x'^1, x'^2, x'^3)} = \det\left(\frac{\partial x^i}{\partial x'^k}\right),\tag{43.16}$$

es el Jacobiano de la transformación, es decir, J es el determinante de la matriz $\partial x^m/\partial x'^q$. Para calcular el valor de este Jacobiano, consideremos la transformación del tensor métrico $g^{ik(0)} = \eta^{ik} = diag(1, -1, -1, -1)$ en el sistema de referencia galileano con coordenadas x'^k a un sistema cualquiera cuyas coordenadas son x^m . La transformación entre ambos sistemas de referencia está dada por

$$g^{ik} = \frac{\partial x^i}{\partial x'^p} \frac{\partial x^k}{\partial x'^q} g^{pq(0)}, \tag{43.17}$$

en donde g^{ik} es el tensor métrico en el espacio curvo. Si ahora tomamos el determinante de la ec.(43.17), entonces como det $(g_{ik}) \equiv g$ -y por lo tanto det $(g^{ik}) = 1/g$ de acuerdo con la ec.(43.12), además de que det $(g^{ik}) = -1$, obtenemos $1/g = -J^2$. De aquí que la ec.(43.16) tome la forma

$$\mathsf{E}^{a\mathrm{bcd}} = \frac{1}{\sqrt{-a}} \epsilon^{a\mathrm{bcd}}.\tag{43.18}$$

Esta es la forma que tiene el tensor de Levi-Civita en cualquier sistema coordenado. Es frecuente no utilizar nunca el lado izquierdo de la ec.(43.18). Por lo tanto, cuando queramos representar a este tensor en cualquier sistema de referencia, utilizaremos únicamente el lado derecho de la ec.(43.18). Dicho de otro modo, el tensor $e^{pqrs}/\sqrt{-g}$ representará de ahora en adelante el valor del tensor (contravariante) de Levi-Civita en cualquier sistema de referencia.

Si ahora bajamos los índices de la ec.(43.18), obtenemos las componentes covariantes del tensor de Levi-Civita

$$E_{pqrs} = E^{abcd} g_{ap} g_{bq} g_{cr} g_{ds} = \frac{1}{\sqrt{-g}} \epsilon^{abcd} g_{ap} g_{bq} g_{cr} g_{ds} = \frac{-g}{\sqrt{-g}} \epsilon_{pqrs}$$

$$= \sqrt{-g} \epsilon_{pqrs}, \qquad (43.19)$$

de acuerdo a la ec.(14.15). La ec.(43.19) significa que las componentes covariantes del tensor de Levi-Civita en cualquier sistema de referencia están dadas por $\sqrt{-g} \, \epsilon_{iklm}$.

Para terminar esta sección generalicemos la forma de realizar integraciones vista en la sección §14 para el caso de espacios curvos.

 $\hat{\tau}$ Integral sobre un volumen de cuatro dimensiones. \rightarrow En un espacio galileano con coordenadas x'^k , un elemento de volumen $d\Omega'$ está dado por $d\Omega' = dx'^0 dx'^1 dx'^2 dx'^3$. Al transformarlo a un espacio curvo con coordenadas x^k , entonces se obtiene

$$d\Omega' \to \frac{\partial (x'^0, x'^1, x'^2, x'^3)}{\partial (x^0, x^1, x^2, x^3)} d\Omega = \sqrt{-g} d\Omega.$$
 (43.20)

En otras palabras, el elemento $\sqrt{-g} d\Omega$ representa el elemento de integración de volumen cuatro-dimensional para cualquier sistema coordenado (plano o curvo).

 \mathfrak{P} Integral sobre una hipersuperficie de tres dimensiones. \Rightarrow Al igual que en el caso galileano, el elemento de hipersuperficie que se genera entre tres desplazamientos infinitesimales de las coordenadas está dado por el tensor antisimétrico $\mathrm{d} S^{ikl}$. El vector dual a este mismo está dado por la contracción de este tensor con el tensor $\sqrt{-g} \varepsilon_{iklm}$. En otras palabras, el elemento de integración para una hipersuperficie de tres dimensiones en un espacio curvo está dado por

$$\sqrt{-g} dS_i = \frac{1}{3!} \sqrt{-g} \varepsilon_{iklm} dS^{klm}. \tag{43.21}$$

† Integral sobre una hipersuperficie de dos dimensiones. → En este caso, el elemento de superficie generado por dos desplazamientos infinitesimales de las coordenadas está dado por df^{ik}. Entonces, el elemento de integración para una superficie de dos dimensiones curva está dado por el tensor dual a este tensor, es decir,

$$\sqrt{-g} \, \mathrm{d} f_{ik}^* = \frac{1}{2!} \sqrt{-g} \, \epsilon_{iklm} \mathrm{d} f^{lm}. \tag{43.22}$$

 \hat{T} Integral sobre una hipersuperficie de una dimensión. \rightarrow Aquí el elemento de integración es el desplazamiento dx^k .

Los teoremas integrales (teorema de Stokes) vistos en la sección §14 permanecen idénticos. En otras palabras, si utilizamos las definiciones de $d\Omega$, dS_i , df_{ik}^* dadas por las ecs.(43.20)-(43.22), entonces las transformaciones de la ec.(14.24), la ec.(14.26) y la ec.(14.27) son válidas.

§44. Intervalos de espacio y tiempo

Consideremos dos eventos que se encuentran infinitesimalmente separados y que ocurren en el mismo lugar en el espacio. El intervalo d $s = cd\tau$ entre ambos eventos (cf. sección §12), con τ el tiempo propio, es tal que d $s^2 = g_{ik}dx^idx^k$ con d $x^1 = dx^2 = dx^3 = 0$. Por lo tanto, el tiempo propio está relacionado con la coordenada temporal x^0 mediante la relación

$$d\tau = \frac{1}{c}\sqrt{g_{00}}dx^0 \tag{44.1}$$

De esta manera, si ambos eventos ocurren en el mismo punto del espacio, entonces[†]

$$\tau = \frac{1}{c} \int \sqrt{g_{00}} \, \mathrm{d}x^0. \tag{44.3}$$

De aquí se ve que

$$q_{00} > 0.$$
 (44.4)

Así pues, una métrica g_{ik} del espacio-tiempo satisface dos propiedades importantes. La primera tiene que ver con los signos de la métrica cuando esta misma es llevada a su forma diagonal (i.e. $g_{ik} = 0$ para todo $i \neq k$). Debido a que det $(g_{ik}) < 0$ cuando la métrica es escrita en su forma galileana y como el signo del determinante es invariante ante transformaciones de coordenadas, entonces uno o tres de los elementos diagonales de

$$\tau = \frac{1}{c} \int g_{ik} dx^i dx^k. \tag{44.2}$$

 $^{^\}dagger \mathrm{Si}$ los eventos no ocurren en el mismo punto del espacio es claro que $\mathrm{d} au = g_{ik} \mathrm{d} x^i \mathrm{d} x^k / c$ y por lo tanto

la métrica g_{mp} en su forma diagonal deben ser negativos. Un tensor métrico que no satisfaga esta condición, carece de sentido físico y no corresponde a alguna métrica de un espaciotiempo real. La segunda condición tiene que ver con el signo de la componente temporal de la métrica dado por la ec.(44.4). Si el tensor métrico satisface la primera condición y no la segunda, entonces es posible, mediante una transformación de coordenadas adecuada, lograr que la condición de la ec.(44.4) sea llevada acabo.

En relatividad especial, el elemento de distancia espacial dl fue obtenido considerando dos eventos infinitesimalmente separados que ocurren a un mismo tiempo. Justamente, cuando $dx^0 = 0$ en un espacio galileano, se obtiene que el elemento de distancia espacial está dado por $dl^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2$. Esto mismo procedimiento no puede realizarse para el caso de espacios curvos, debido a que el tiempo propio tiene una dependencia en la coordenada x^0 que varia de acuerdo a la posición en el espacio como se ve de la ec.(44.3).

Para calcular el elemento de longitud dl en un espacio curvo, realicemos el siguiente experimento. En un punto A del espacio lancemos una señal de luz hacia el punto B, donde se encuentra un espejo que rebota la radiación de vuelta hacia el punto A. Supongamos que el evento de salida del haz de luz corresponde entonces a $x^k + dx^k$. El evento del reflejo del haz de luz corresponde a x^k . Escribamos ahora al intervalo ds como

$$ds^{2} = g_{ik} dx^{i} dx^{k} = g_{00} (dx^{0})^{2} + 2g_{0\alpha} dx^{0} dx^{\alpha} + g_{\mu\nu} dx^{\nu} dx^{\mu}.$$
 (44.5)

La trayectoria del haz de luz que parte de A hacia B y luego regresa hacia A por el mismo camino es tal que ds=0. Sustituyendo este valor en la ec.(44.5) y resolviendo para d x^0 obtenemos dos soluciones

$$dx^{0\,(\pm)} = \frac{1}{g_{00}} \left\{ -g_{0\mu} dx^{\mu} \pm \sqrt{(g_{0\mu} g_{0\nu} - g_{\mu\nu} g_{00}) dx^{\mu} dx^{\nu}} \right\}, \tag{44.6}$$

De aquí se sigue que la señal sale del punto A al tiempo $x^0 + dx^{0(-)}$, llega al punto B al tiempo x^0 y regresa nuevamente al punto A al tiempo $x^0 + dx^{0(+)}$. El tiempo total que se lleva desde la salida del punto A hasta que el haz vuelve a regresar al mismo punto es

$$dx^{0(+)} - dx^{0(-)} = \frac{2}{g_{00}} \sqrt{(g_{0\mu}g_{0\nu} - g_{\mu\nu}g_{00}) dx^{\mu}dx^{\nu}}.$$
 (44.7)

De acuerdo a la ec. (44.1), el intervalo correspondiente de tiempo propio es entonces la

cantidad de la ec.(44.7) multiplicada por $\sqrt{g_{00}}/c$. De esta manera, la distancia dl entre el punto A y el punto B está dado por este tiempo propio multiplicado por c/2, es decir,

$$dl^2 = \gamma_{\mu\nu} dx^{\mu} dx^{\nu}. \tag{44.8}$$

en donde el tensor métrico $\gamma_{\mu\nu}$ del tres-espacio está dado por

$$\gamma_{\mu\nu} \equiv -g_{\mu\nu} + \frac{g_{0\mu}g_{0\nu}}{g_{00}}.$$
 (44.9)

La forma cuadrática para el elemento de longitud dada por la ec. (44.8) debe ser positiva definida, es decir,

$$\gamma_{11} > 0, \quad \det \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix} > 0, \quad \det \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} > 0.$$
(44.10)

Si ahora sustituimos los valores de $\gamma_{\mu\nu}$, dados por la ec.(44.9), en la ec.(44.10) se obtiene que el tensor métrico g_{ik} del cuatro-espacio satisface

$$g_{00} > 0$$
, $\det \begin{bmatrix} g_{00} & g_{01} \\ g_{10} & g_{11} \end{bmatrix} < 0$, $\det \begin{bmatrix} g_{00} & g_{01} & g_{02} \\ g_{10} & g_{11} & g_{12} \\ g_{20} & g_{21} & g_{22} \end{bmatrix} > 0$, $g < 0$. (44.11)

Un espacio métrico cuyas componentes no satisfacen estás condiciones carece de sentido físico, es decir, no puede ser generado por cuerpos masivos de la naturaleza.

Veamos ahora como sincronizar los relojes en un espacio curvo. En el caso del intercambio de las señales de luz que salen de A, llega a B y es reflejada nuevamente hacia el punto A, podemos decir que el evento simultaneo con el punto B -cuyo tiempo está dado por la coordenada x^0 - está dado por la mitad del avance del reloj entre los momentos de salida y retorno al punto A. En otras palabras, el tiempo

$$x^{0} + dx^{0} = x^{0} + \frac{1}{2} \left(dx^{0(+)} + dx^{0(-)} \right),$$
 (44.12)

medido en el punto A, está sincronizado con el tiempo x^0 que está medido en el punto B.

Con ayuda de la ec.(44.6) se ve entonces que la diferencia de tiempo dx^0 que se obtiene de sincronizar dos puntos infinitesimalmente separados en el espacio está dado por

$$dx^0 = -g_{\mu}dx^{\mu}. \tag{44.13}$$

en donde el cuatro-vector g_μ está dado por

$$g_{\mu} \equiv \frac{g_{0\mu}}{g_{00}} \tag{44.14}$$

A lo largo de un circuito cerrado, la integral de línea que se obtiene de la ec.(44.13) no es necesariamente cero. Es claro entonces que no es posible en primera instancia, sincronizar los relojes en un espacio curvo. Esto puede lograrse únicamente en los casos en los que las componentes del tensor métrico sean tales que $g_{0\beta}=0$. Bajo esta circunstancias es posible sincronizar todos los relojes localizados en una variedad.

El hecho de que no sea posible sincronizar relojes en el espacio no es una propiedad inata a la geometría de la variedad (del espacio-tiempo). Esto se debe a la arbitrariedad de las coordenadas (del sistema de referencia) escogidas. Mediante una transformación de coordenadas es posible, de una infinidad de maneras, llevar a las componentes $g_{0\beta}$ del tensor métrico para que se anulen.

En un espacio plano el tiempo propio elapsa de manera distinta para dos relojes que se mueven uno con respecto al otro (cf. sección §12). En el caso de espacios curvos, esto es cierto incluso para relojes que están en reposo uno con respecto del otro, pero localizados en puntos diferentes del espacio. Esto significa que el intervalo de tiempo propio que elapsa entre dos eventos que ocurren en algún lugar del espacio, y el intervalo de tiempo que ocurre entre dos eventos simultáneos a estos dos en otro punto del espacio, difieren entre si.

§45. Diferenciación

En un espacio plano de cuatro dimensiones, la diferencial dA^k de un vector A^k forma un vector. Además, la derivada $\partial A^k/\partial x^l$ forma un tensor. En un espacio curvo esto no es siempre cierto. Dicho de otro modo, en un espacio curvo cualquiera no siempre sucede que la diferencial dA^k sea un vector y que $\partial A^k/\partial x^l$ sea un tensor. Para ver esto, consideremos

la transformación del vector A^k de un sistema de referencia a otro, dada por la ec.(43.3). La diferencial de esta relación es

$$dA^{k} = \frac{\partial x^{k}}{\partial x'^{m}} dA'^{m} + d\left(\frac{\partial x^{k}}{\partial x'^{m}}\right) A'^{m} = \frac{\partial x^{k}}{\partial x'^{m}} dA'^{m} + A'^{m} dx^{p} \frac{\partial^{2} x^{k}}{\partial x'^{m} \partial x^{p}}.$$
 (45.1)

Esta cantidad es un vector si y solo si $\partial^2 x^k/\partial x'^m \partial x^p = 0$, es decir, si la transformación de coordenadas es lineal. La razón por la que la diferencial dA^k no es un vector en general se debe a que esta diferencial representa la diferencia del vector A^k localizado en dos puntos del espacio infinitesimalmente separados y, como se ve de la ec.(43.3), para distintos puntos del espacio las componentes del vector A^k se transforman de manera distinta. Este mismo análisis puede hacerse también para las cantidades $\partial A^k/\partial x^l$ y debido a la transformación de la ec.(43.4) se sigue que esta cantidad no es un tensor en términos generales.

Lo que haremos ahora es buscar un equivalente a la diferencial dA^k en un espacio curvo que se comporte como un vector. Dicho de otro modo, transformemos al tensor dA^k descrito en un espacio galileano, a un espacio curvo. En coordenadas curvilíneas sucede que para calcular la diferencial de un vector (i.e. la diferencia entre los valores de un mismo vector localizado en dos puntos infinitesimalmente cercanos) de tal manera que esta operación genere un vector, es necesario que los dos valores del vector sean sustraídos en el mismo punto del espacio. Además, esta diferencia debe ser tal que cuando se lleve acabo en un sistema de coordenadas galileano, coincida con la diferencial dA^k . En coordenadas galileanas, la operación requerida coincide con trasladar paralelamente a si mismo a uno de los vectores desde un punto hasta donde se localiza el otro vector. Este transporte paralelo es justamente lo que hasta ahora haz realizado para calcular la diferencial de dos vectores localizados en un espacio Euclidiano. Debido a las propiedades de un espacio plano, al trasladar paralelamente en si mismo a un vector de un punto a otro, el valor del vector no varía. Sin embargo, en un espacio curvo, al realizar esta operación se obtiene que las componentes del vector trasladado paralelamente a si mismo, varían.

De esta manera, para calcular la "diferencial" de un vector A^k localizado en el punto x^k del espacio, en coordenadas curvilíneas, es necesario realizar la siguiente operación. El valor del vector A^k en el punto $x^k + dx^k$ está dado por $A^k + dA^k$. Si ahora sometemos al vector A^k a un desplazamiento paralelo a si mismo, hasta llegar al punto $x^k + dx^k$ entonces

el vector tendrá el valor $A^k + \delta A^k$. La diferencia DA^k que se obtiene de substraer el valor $A^k + \delta A^k$ del vector $A^k + dA^k$, y que corresponde al valor de la diferencial en coordenadas curvilíneas, está dada por

$$DA^{k} = \left(A^{k} + dA^{k}\right) - \left(A^{k} + \delta A^{k}\right) = dA^{k} - \delta A^{k}. \tag{45.2}$$

De aquí, es claro que cuando se tienen coordenadas galileanas, el desplazamiento paralelo del vector A^k sobre si mismo es tal que $\delta A^k = 0$ y por lo tanto la diferencial DA^k corresponde con el valor dA^k como se espera.

La cantidad δA^k por la cual cambian las componentes del vector A^k al realizar un transporte paralelo infinitesimal depende de los valores de las componentes del mismo vector. Debido a que la suma de dos vectores, digamos $A^k + B^k$, debe de transformarse de la misma manera que cada uno de sus pedazos independientes, entonces $\delta (A^k + B^k) = \delta A^k + \delta B^k$. En otras palabras, δ es una función lineal. Claramente,

$$\delta A^{k} = -\Gamma_{lm}^{k} A^{l} dx^{m}. \tag{45.3}$$

Las cantidades Γ_{lm}^k se denominan los símbolos de Christoffel o la conexión. Los símbolos de Christoffel son tales que $\Gamma_{lm}^k=0$ en un sistema galileano, donde $\delta A^k=0$. Esto indica que la conexión no representa a un tensor, pues un tensor que es igual a cero en un sistema de referencia es idénticamente igual a cero en cualquier otro sistema de referencia. En un sistema de coordenadas curvilíneas es por lo tanto imposible hacer cero a los símbolos de Christoffel en todo el espacio. Sin embargo, debido al principio de equivalencia, es siempre posible escoger un sistema de coordenadas de tal forma que la conexión se anule en una región suficientemente pequeña del espacio, en donde el espacio es plano y la gravedad ha sido eliminada localmente.

Ante un desplazamiento paralelo, un escalar es invariante. En otras palabras, δ (escalar) = 0. El producto escalar $A^k B_k$ de dos vectores A^k y B^k es un escalar y por lo tanto

$$\delta\left(A^{k}B_{k}\right)=A^{k}\delta B_{k}+B_{k}\delta A^{k}=0.$$

De aquí que,

$$A^k \delta B_k = A^i \delta B_i = -B_k \delta A^k = B_k \Gamma_{lm}^k A^l dx^l$$

y por lo tanto

$$\delta B_k = \Gamma_{kp}^l B_l dx^p. \tag{45.4}$$

De la ec.(45.2), la ec.(45.3) y la ec.(45.4) se sigue que

$$DA^{k} = A^{k}_{;p} dx^{p}, \qquad DA_{k} = A_{k;p} dx^{p},$$
 (45.5)

en donde la derivada covariante ();p del vector contravariante A^k está dada por

$$A^{k}_{;p} = \left(\frac{\partial A^{k}}{\partial x^{p}} + \Gamma^{k}_{mp} A^{m}\right), \tag{45.6}$$

y la derivada covariante del vector covariante A_k está dada por

$$A_{k;p} = \left(\frac{\partial A_k}{\partial x^p} - \Gamma_{kp}^m A^k\right). \tag{45.7}$$

De la ec.(45.5) se ve que, como dx^k , DA^m y DA_r son vectores, las cantidades $A^k_{;p}$ y $A_{k;p}$ son tensores. Además, en un sistema galileano los símbolos de Christoffel son cero y por lo tanto la derivada covariante $A^k_{;p}$ coincide con la derivada $\partial A^k/\partial x^p$.

Calculemos ahora la derivada covariante del tensor contravariante A^iB^k formado por los productos los vectores A^k y B^k ,

$$\delta\left(A^iB^k\right)=A^i\delta B^k+A^i\delta B^k=-A^i\Gamma^k_{lm}B^l\text{d}x^m-B^k\Gamma^i_{lm}A^l\text{d}x^m.$$

De aquí se sigue que la aplicación del operador δ a cualquier tensor contravariante Π^{ik} de rango 2 está dada por

$$\delta \Pi^{ik} = -\left(\Pi^{im}\Gamma^{k}_{ml} + \Pi^{mk}\Gamma^{i}_{ml}\right) dx^{l}. \tag{45.8}$$

Por lo tanto

$$D\Pi^{ik} = d\Pi^{ik} - \delta\Pi^{ik} = \Pi^{ik}_{;l} dx^{l}, \tag{45.9}$$

en donde la derivada covariante $\Pi^{ik}_{:l}$ del tensor Π^{ik} está dada por

$$\Pi^{ik}_{;l} = \frac{\partial \Pi^{ik}}{\partial x^l} + \Gamma^i_{ml} \Pi^{mk} + \Gamma^k_{ml} \Pi^{im}. \tag{45.10}$$

De manera totalmente análoga se puede calcular la derivada covariante de los tensores $\Pi^i{}_k$ y Π_{ik} para obtener

$$\Pi^{i}_{k;l} = \frac{\partial \Pi^{i}_{k}}{\partial x^{l}} + \Gamma^{i}_{ml} \Pi^{m}_{k} - \Gamma^{m}_{kl} \Pi^{i}_{m}. \tag{45.11}$$

$$\Pi_{ik;l} = \frac{\partial \Pi_{ik}}{\partial x^l} - \Gamma_{il}^m \Pi_{mk} - \Gamma_{kl}^m \Pi_{im}. \tag{45.12}$$

A partir de estas relaciones uno puede entonces calcular la derivada covariante de un tensor de rango n. Esta derivada está dada por la derivada del tensor con respecto a las coordenadas mas n términos que son funciones lineales de la conexión, es decir,

$$\Omega^{\dots}_{\dots i \dots}{}^{k \dots}_{;l} = \frac{\partial}{\partial x^{l}} \Omega^{\dots}_{\dots i \dots}{}^{k \dots}_{\dots} + \dots - \Gamma^{m}_{il} \Omega^{\dots}_{\dots m \dots}{}^{k \dots}_{\dots} + \dots + \Gamma^{k}_{ml} \Omega^{\dots}_{\dots i \dots}{}^{m \dots}$$
(45.13)

Debido a que la aplicación del operador δ a un escalar φ es igual a cero, entonces la derivada covariante de un escalar es igual a la derivada con respecto a las coordenadas del escalar

$$\phi_{;l} = \frac{\partial \phi}{\partial x^{l}}.\tag{45.14}$$

Debido a la linearidad del operador δ , la derivada covariante es también una función lineal,

$$(A^{p}B_{q})_{;l} = B_{q}A^{p}_{;l} + A^{p}B_{p;l}.$$
 (45.15)

Definamos a la derivada contravariante ();l de un vector Bp como

$$B^{p;l} = g^{lm}B^{p}_{;m}, \qquad B_{p}^{;l} = g^{lm}B_{p;m}.$$
 (45.16)

En otras palabras, la derivada contravariante corresponde a subir el índice de derivación covariante.

Tarea 14

La cantidad DA^k de la ec.(45.5) es un vector contravariante y por lo tanto se transforma de acuerdo a la ec.(43.3), es decir,

$$DA^{k} = \frac{\partial x^{k}}{\partial x'^{i}} (DA)^{i} = \frac{\partial x^{k}}{\partial x'^{i}} \left\{ \frac{\partial A'^{i}}{\partial x'^{l}} + \Gamma_{ml}^{i} A'^{m} \right\} dx'^{l}. \tag{45.17}$$

(1) Utilizando el hecho de que

$$A'^{m} = \frac{\partial x'^{m}}{\partial x^{m}} A^{k}, \qquad \frac{\partial}{\partial x'^{l}} = \frac{\partial x^{m}}{\partial x'^{l}} \frac{\partial}{\partial x^{m}},$$

muestra que la ec.(45.17) toma la forma

$$DA^{i} = \frac{\partial x^{i}}{\partial x'^{k}} \left\{ \frac{\partial x^{m}}{\partial x'^{l}} \frac{\partial^{2} x'^{k}}{\partial x^{m} \partial x^{n}} A^{n} + \frac{\partial x^{m}}{\partial x'^{l}} \frac{\partial x'^{k}}{\partial x^{n}} \frac{\partial A^{n}}{\partial x^{m}} + \Gamma_{ml}^{\prime k} \frac{\partial x'^{m}}{\partial x^{s}} A^{s} \right\} \frac{\partial x'^{l}}{\partial x^{q}} dx^{q}. \quad (45.18)$$

(II) Compara la ec.(45.18) con la ec.(43.3) y muestra que

$$\Gamma_{kl}^{i} = \Gamma_{rp}^{\prime m} \frac{\partial x^{i}}{\partial x^{\prime m}} \frac{\partial x^{\prime r}}{\partial x^{k}} \frac{\partial x^{\prime p}}{\partial x^{l}} + \frac{\partial^{2} x^{\prime m}}{\partial x^{k} \partial x^{l}} \frac{\partial x^{i}}{\partial x^{\prime m}}.$$
 (45.19)

De aquí se ve que los símbolos de Christoffel se comportan como un tensor solamente cuando el segundo término del lado derecho de la ecuación se anula, es decir, cuando la transformación de un sistema coordenado a otro es lineal. Este segundo término es además simétrico en los índices k y l, por lo tanto las componentes del objeto $S^i_{kl} \equiv \Gamma^i_{kl} - \Gamma^i_{lk}$ se transforman como un tensor, es decir,

$$S_{kl}^{i} = \frac{\partial x^{i}}{\partial x'^{r}} \frac{\partial x'^{s}}{\partial x^{k}} \frac{\partial x'^{t}}{\partial x^{l}} S^{r}_{st}.$$
 (45.20)

Debido a que $S_{kl}^i = 0$ para un sistema galileano y utilizando la ec.(45.20), es claro que el valor de este tensor es cero en cualquier otro sistema de coordenadas. Esto significa que

$$\Gamma_{\rm lm}^k = \Gamma_{\rm ml}^k,\tag{45.21}$$

es decir, la conexión es simétrica en sus índices inferiores. En futuras aplicaciones escribiremos a los símbolos de Christoffel con todos sus índices abajo como

$$\Gamma_{\rm klm} = g_{\rm kp} \Gamma_{\rm lm}^{\rm p}. \tag{45.22}$$

El vector covariante DA_k está relacionado con el vector contravariante DA^k por la relación $DA_k = g_{kl}DA^l$, como sucede para cualquier vector. Debido a que $A_k = g_{kp}A^p$ entonces $DA_k = g_{kp}DA^p + A^pDg_{kp}$. Con esto se obtiene que $Dg_{kl} = 0$ o bien que la derivada covariante del tensor métrico es cero, es decir,

$$g_{kp;l} = 0.$$
 (45.23)

Utilizando la ec.(45.12) y la ec.(45.23) se obtiene que

$$\frac{\partial g_{pk;l}}{\partial x^l} = \Gamma_{kpl} + \Gamma_{pkl}, \qquad \frac{\partial g_{lp}}{\partial x^k} = \Gamma_{pkl} + \Gamma_{lpk}, \qquad -\frac{\partial g_{kl}}{\partial x^p} = -\Gamma_{lkp} - \Gamma_{klp}.$$

La suma de estas tres ecuaciones nos da la relación entre los símbolos de Christoffel y el tensor métrico

$$\Gamma_{ikl} = \frac{1}{2} \left(\frac{\partial g_{pk}}{\partial x^l} + \frac{\partial g_{pl}}{\partial x^k} - \frac{\partial g_{kl}}{\partial x^p} \right). \tag{45.24}$$

Utilizando la ec.(45.22) podemos subir el índice de la ec.(45.24) para obtener

$$\Gamma_{kl}^{p} = \frac{1}{2}g^{pm} \left(\frac{\partial g_{mk}}{\partial x^{l}} + \frac{\partial g_{ml}}{\partial x^{k}} - \frac{\partial g_{kl}}{\partial x^{m}} \right). \tag{45.25}$$

Estas dos últimas ecuaciones muestran que las derivadas del tensor métrico generan a los símbolos de Christoffel. Debido a que las cantidades g_{ik} representan al campo gravitacional, entonces la cantidad Γ^i_{kl} es como "la fuerza" que se ejerce sobre una partícula de prueba que se mueve en un campo gravitacional.

Calculemos ahora la diferencial dg del determinante g del tensor métrico g_{kl} . El determinante de esta matriz está dado por

$$d(detg_{ik}) = (dg_{00} \times menor \ de \ g_{00}) + (dg_{01} \times menor \ de \ g_{01}) \times \dots$$
 (45.26)

Como la matriz formada por las cantidades g^{ik} es la matriz inversa de g_{ik} entonces g^{ik} es la matriz formada por los menores de g_{ik} dividida por el det $g_{ik} = g$. Por lo tanto, los

menores de la cantidad gik están dados por ggik. Con esto, la ec.(45.26) se simplifica a

$$dg = d (det g_{ik}) = g g^{ik} dg_{ik}. \tag{45.27}$$

Ahora bien, como $g_{ik}g^{ik}=\delta_p^p=4$, entonces $g_{ik}dg^{ik}=-g^{ik}dg_{ik}$. De aquí que la ec.(45.27) tome la forma

$$dg = d (det g_{ik}) = -g g_{ik} dg^{ik}.$$
 (45.28)

Calculemos ahora la contracción

$$\Gamma_{ki}^{i} = \frac{1}{2}g^{im}\left(\frac{\partial g_{mk}}{\partial x^{i}} + \frac{\partial g_{mi}}{\partial x^{k}} - \frac{\partial g_{ki}}{\partial x^{m}}\right) = \frac{1}{2}g^{ik}\frac{\partial g_{mi}}{\partial x^{k}}.$$
 (45.29)

Dividiendo la ec.(45.28) por dx^k se obtiene que $\partial g/\partial x^k = gg^{im}\partial g_{im}/\partial x^k$. Sustituyendo este valor en la ec.(45.29) se obtiene que

$$\Gamma_{ki}^{i} = \frac{1}{2g} \frac{\partial g}{\partial x^{k}} = \frac{\partial}{\partial x^{k}} \ln \sqrt{-g}.$$
 (45.30)

Tarea 15

(1) La contracción de los índices inferiores en los símbolos de Christoffel está dada por

$$g^{kl}\Gamma_{kl}^{i} = \frac{1}{2}g^{kl}g^{im}\left(\frac{\partial g_{mk}}{\partial x^{l}} + \frac{\partial g_{ml}}{\partial x^{k}} - \frac{\partial g_{kl}}{\partial x^{m}}\right). \tag{45.31}$$

Para simplificar esta relación muestra primero que

$$g^{kl}\Gamma^{i}_{kl} = g^{kl}g^{im} \left(\frac{\partial g_{mk}}{\partial x^{l}} - \frac{1}{2} \frac{\partial g_{kl}}{\partial x^{m}} \right), \tag{45.32}$$

$$\frac{\partial g^{il}}{\partial x^{l}} = -g^{kl}g^{im}\frac{\partial g_{mk}}{\partial x^{l}}.$$
 (45.33)

Con estas dos ecuaciones y utilizando la ec.(45.27) muestra que la ec.(45.31) se escribe

simplemente como

$$g^{kl}\Gamma^{i}_{kl} = -\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{l}} \left(\sqrt{-g} g^{ik} \right). \tag{45.34}$$

(II) Utilizando el hecho de que $g_{il}g^{lk} = \delta^k_i$ muestra que

$$g_{il}\frac{\partial g^{lk}}{\partial x^m} = -g^{lk}\frac{\partial g_{il}}{\partial x^m},\tag{45.35}$$

y por lo tanto, utilizando el hecho de que la derivada covariante del tensor métrico es cero -cf. ec.(45.23), entonces

$$\frac{\partial g^{ik}}{\partial x^{l}} = -\Gamma_{ml}^{i} g^{mk} - \Gamma_{ml}^{k} g^{im}. \tag{45.36}$$

Esta última ecuación expresa la derivada del tensor métrico en función del mismo tensor métrico y la conexión.

(III) Si A^k es un vector, Π^{kl} es un tensor antisimétrico y Ω^{kl} es un tensor simétrico, muestra que

$$A^{p}_{;p} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{p}} \left(A^{p} \sqrt{-g} \right), \tag{45.37}$$

$$\Pi^{ik}_{;k} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^k} \left(\Pi^{ik} \sqrt{-g} \right) \tag{45.38}$$

$$\Omega_{i}^{k}_{;k} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{k}} \left(\Omega_{i}^{k} \sqrt{-g} \right) - \frac{1}{2} \Omega^{kl} \frac{\partial g_{kl}}{\partial x^{i}}. \tag{45.39}$$

En coordenadas curvilíneas el divergente del vector A^i se transforma en $A^i_{;i}$. Por lo tanto, la ec.(45.37) representa al divergente en coordenadas curvilíneas del vector A^i . Es claro además que como $A_{i;k} - A_{k;i} = \partial A_i/\partial x^k - \partial A_k/\partial x^i$, entonces esta cantidad tiene la misma forma que en coordenadas cartesianas. Y como $\partial A_i/\partial x^k - \partial A_k/\partial x^i$ es un tensor antisimétrico, entonces $A_{i;k} - A_{k;i}$ es también un tensor antisimétrico.

(IV) En coordenadas galileanas, el laplaciano $\Delta \varphi$ de un escalar φ está dado por $\partial^2 \varphi / \partial x^k \partial x_k$. En coordenadas curvilíneas, esta cantidad se transforma en $\varphi^{;k}_{;k}$. Muestra que

$$\Delta \phi = \phi^{;k}_{;k} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{i}} \left(\sqrt{-g} g^{ik} \frac{\partial \phi}{\partial x^{k}} \right). \tag{45.40}$$

El teorema de Stokes visto en la sección §43 puede ser escrito en ocasiones de manera un poco mas elegante utilizando las relaciones anteriores. En efecto, debido a que la integral sobre una hipersuperficie de tres dimensiones se transforma a una integral sobre el cuatrovolumen mediante la regla $dS_i \rightarrow d\Omega \ \partial/\partial x^i$ y por lo tanto

$$A^i dS_i \to d\Omega \frac{\partial A^i}{\partial x^i}, \text{ o bien, } \left(A^i \sqrt{-g}\right) dS_i \to d\Omega \frac{\partial}{\partial x^i} \left(A^i \sqrt{-g}\right).$$

Con esto y utilizando la ec.(45.37) se obtiene el teorema de Gauss estándard en espacios curvos

$$\oint A^k \sqrt{-g} \, dS_k = \int A^k_{;k} \sqrt{-g} \, d\Omega$$
(45.41)

§46. Movimiento de una partícula

Como vimos en la sección §15, en relatividad especial, una partícula de masa m se mueve obedeciendo al principio de mínima acción. La partícula se mueve de tal forma que su acción S corresponde a un mínimo para trayectorias suficientemente pequeñas. Dicho de otro modo, la línea de universo de la partícula debe corresponder a un extremo entre dos puntos del espacio—tiempo, es decir,

$$\delta S = -mc\delta \int ds = 0, \tag{46.1}$$

Un campo gravitacional representa un cambio en la estructura del espacio—tiempo plano, es decir, representa un cambio en el intervalo ds. Por esta razón, la ec.(46.1) es cierta también para una partícula que se mueve a lo largo de un campo gravitacional. En un campo gravitacional la trayectoria de la partícula se lleva acabo de tal forma que los puntos sobre esta misma alcanzan un extremo. Esta trayectoria se le denomina geodésica. En ausencia de campos gravitacionales, las geodésicas corresponden a líneas rectas que implica un movimiento uniforme y rectilíneo. En términos generales esto no es cierto. Cuando se consideran campos gravitacionales, las geodésicas no son trayectorias rectilíneas, sino que son trayectorias curvas (extremas) las cuales implican que el movimiento de la partícula es no—uniforme y no—rectilíneo.

Para calcular la ecuación de movimiento en un campo gravitacional, dada por la

ec.(46.1), generalicemos el resultado obtenido al variar la acción para el caso de un espacio plano en ausencia de campos gravitacionales. En relatividad especial la ecuación de movimiento de una partícula está dada por la ec.(15.7), es decir, $du^i = 0$. Claramente esta relación debe transformarse a $Du^i = 0$ en el caso de un espacio curvo. El operador D está dado por la ec.(45.5) y por lo tanto la trayectoria de la partícula en un campo gravitacional está dada por

$$du^i + \Gamma^i_{kl} u^k dx^l = 0.$$

Dividiendo esta última ecuación por ds y utilizando el hecho de que la velocidad $u^i = dx^i/ds$ se obtiene que

$$\frac{\mathrm{d}^2 x^{i}}{\mathrm{d}s^2} + \Gamma_{kl}^{i} \frac{\mathrm{d}x^{k}}{\mathrm{d}s} \frac{\mathrm{d}x^{l}}{\mathrm{d}s} = 0. \tag{46.2}$$

Esta es la ecuación buscada y se denomina la ecuación geodésica. Geométricamente representa la trayectoria de longitud mínima entre dos puntos de un espacio curvo. Esta ecuación muestra que el movimiento de una partícula no se lleva a cabo de manera uniforme y rectilínea cuando esta última se mueve bajo la influencia de un campo gravitacional.

En componentes covariantes, la ecuación geodésica toma la forma $Du_i=0$. Utilizando la ec.(45.5) esta relación se transforma en

$$\frac{\mathrm{d}^2 x_i}{\mathrm{d}s^2} - \Gamma_{ikl} \frac{\mathrm{d}x^k}{\mathrm{d}s} \frac{\mathrm{d}x^l}{\mathrm{d}s} = 0. \tag{46.3}$$

Esta ecuación se reduce considerablemente utilizando la ec.(45.24) para obtener

$$\frac{\mathrm{d}^2 x_i}{\mathrm{d}s^2} - \frac{1}{2} \frac{\partial g_{kl}}{\partial x^i} \frac{\mathrm{d}x^k}{\mathrm{d}s} \frac{\mathrm{d}x^l}{\mathrm{d}s} = 0. \tag{46.4}$$

La cuatro-aceleración de una partícula de masa m está dada por du^i/ds . Por lo tanto, de acuerdo a la ec.(46.3), la cuatro-fuerza que se ejerce sobre esta partícula está dada por $-m\Gamma_{kl}^iu^ku^l$. Debido a que los símbolos de Christoffel están determinados por las derivadas del tensor métrico con respecto a las posiciones, podemos decir que las cantidades g_{ik} representan el "potencial" del campo gravitacional. Esto ya había sido percibido a través de la ec.(41.7) en donde se mostró que la corrección relativista al campo gravitacional Newtoniano significa que $g_{00} \approx 1 + 2\phi/c^2$.

La ec.(46.3) puede escribirse como

$$\frac{\mathrm{d}^2 x^{i}}{\mathrm{d}s^2} = \Gamma_{kl}^{i} \frac{\mathrm{d}x^{k}}{\mathrm{d}s} \frac{\mathrm{d}x^{l}}{\mathrm{d}s}.$$
 (46.5)

El lado derecho de esta ecuación tiene que ver con los campos gravitacionales y por lo tanto es una forma de describir la curvatura del espacio—tiempo. El lado izquierdo representa la aceleración o los movimientos de partículas materiales sobre un campo gravitacional. De aquí que "la curvatura del espacio le indique a las masas como moverse". Esta es la interpretación geometrodinámica de la ecuación geodésica.

En el límite Newtoniano el Lagrangiano L de una partícula de masa m que se mueve en un espacio plano está dado por la ec. (15.4). Si existe un campo gravitacional, el Lagrangiano de una partícula de prueba en este mismo límite toma la forma

$$L = -mc^2 + \frac{1}{2}mv^2 - m\phi, (46.6)$$

en donde ϕ es el potencial escalar gravitacional. De esta manera, la acción S de una partícula que se mueve en un campo gravitacional está dada por

$$S = \int L dt = -mc \int \left(c - \frac{v^2}{2c} + \frac{\phi}{c}\right) dt.$$
 (46.7)

Comparando esto con la ec.(46.1), i.e. $S=-mc\int ds$, se obtiene que en el caso límite Newtoniano el intervalo está dado por

$$ds = \left(c - \frac{v^2}{2c} + \frac{\phi}{c}\right) dt. \tag{46.8}$$

Elevando esta ecuación al cuadrado y despreciando términos que tienden a cero cuando $c \to \infty$ se obtiene que

$$ds^{2} = \left(1 + \frac{2\phi}{c^{2}}\right)c^{2}dt^{2} - dl^{2}.$$
 (46.9)

En esta ecuación hemos escrito la velocidad de la partícula v = dl/dt. La ec.(46.9) muestra que la primera corrección relativista a la métrica del espacio-tiempo con gravitación es tal que

$$g_{00} \approx 1 + \frac{2\phi}{c^2},$$
 (46.10)

y que $g_{\alpha\beta}=\delta_{\alpha\beta},\ g_{0\zeta}=0$. Esto ya había sido antes calculado por otro método como lo muestra la ec.(41.7).

§47. Ecuaciones del campo gravitacional

La manera en la que definimos el transporte paralelo de un vector fue pidiendo que este mismo fuera tal que cuando se efectuara la operación en un espacio infinitesimalmente pequeño con coordenadas galileanas, entonces las componentes del vector permanecerían fijas (cf. sección §45).

Consideremos un conjunto de puntos $x^i(s)$ en un espacio curvo que forman una línea cuyo elemento de arco es s. Debido a que $ds^2 = dx^i dx_i$, el vector tangente unitario a esta curva es $u^i = dx^i/ds$. Si esta línea es además una geodésica, entonces $Du^i = du^i - \delta u^i = 0$. Esto significa que $\delta u^i = du^i$. Al transportar paralelamente a si mismo al vector u^i que se encuentra en la posición x^i hasta la posición $x^i + dx^i$ se obtiene el vector $u^i + \delta u^i = u^i + du^i$. En otras palabras, el vector tangente u^i localizado en el punto x^i y trasladado paralelamente a si mismo a lo largo de una geodésica coincide con el vector tangente $u^i + du^i$ a la geodésica en el punto $x^i + dx^i$.

Geométricamente es claro[†] que al hacer un transporte paralelo de dos vectores, el "ángulo" entre ellos no varía. De aquí se sigue en particular que el ángulo entre un vector cualquiera v^k y el vector tangente a la curva u^k permanece igual cuando v^k es transportando paralelamente a lo largo de una geodésica. Esto significa que al transportar paralelamente a un vector a lo largo de una geodésica sus componentes no cambian.

Consideremos una variedad de dos dimensiones como la que se muestra en la fig.(VI.3). Si el contorno cerrado ABC está formado por geodésicas, entonces al transportar paralelamente al vector 1 a lo largo del contorno se obtienen los vectores 2, 3 y 4. El vector 4 es el resultado de efectuar el transporte paralelo en el contorno cerrado del vector 1 partien-

[†]Algebraicamente también es claro, basta tomar dos vectores $u^i y v^i y$ transportarlos paralelamente para obtener $u^i + \delta u^i y v^i + \delta v^i$. Con esto es claro que $u^i v_i = \left(u^i + \delta u^i\right) \left(v_i + \delta v_i\right)$ despreciando términos de orden superior. De aquí se sigue de inmediato que el "ángulo" entre dos vectores cualquiera $u^i y v^i$ se conserva al hacer un transporte paralelo.

do desde A. En el caso mas general, el vector 1 y el vector 4 no coinciden entre si. Esto significa que en un espacio curvo el transporte paralelo de un vector a partir de un punto dado hasta otro, arroja un resultado distinto si el traslado se hace a lo largo de trayectorias diferentes.

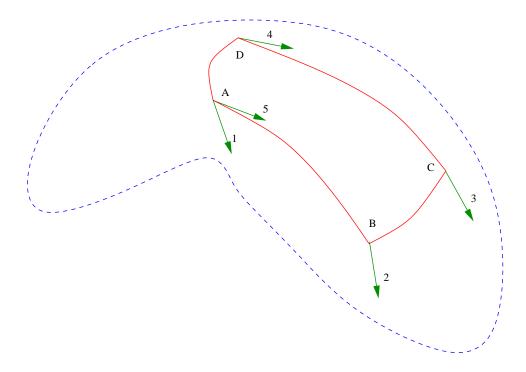


Figura VI.3: Sobre una variedad en dos dimensiones (línea punteada) se ha dibujado un contorno cerrado formado por geodésicas (línea continua). Sometamos al vector 1 a un transporte paralelo de A hasta B y luego hasta C, continuando hasta D para finalmente regresar a A. Debido a que el transporte paralelo de un vector sobre una geodésica preserva el ángulo con el vector tangente a la geodésica, entonces el vector 1 se transporta paralelamente hasta llegar al vector 2 cuando llegar al punto B. Al transportar a este vector de B a C, este se convierte en el vector 3. Finalmente, al hacer el transporte paralelo del vector 3 que está localizado en C, este vector se transforma en el vector 4, que en términos generales, no coincide con el vector 1.

Supongamos ahora que un vector A_k es transportado paralelamente a lo largo de un contorno cerrado infinitesimalmente pequeño. Al regresar a su posición original en el contorno, el vector A_k ha cambiado y tiene el valor $A_k + \Delta A_k$. Es claro que este cambio está dado por la integral $\oint \delta A_k$ tomada a lo largo del contorno cerrado. Con esto y debido

a la ec.(45.4) se obtiene que

$$\Delta A_{k} = \oint \Gamma_{ml}^{i} A_{i} dx^{l}. \tag{47.1}$$

Utilizando el teorema de Stokes, ec.(14.28), en esta última ecuación y debido a que el contorno es infinitesimalmente pequeño se obtiene aproximadamente que

$$\Delta A_{k} \approx \frac{1}{2} \left\{ \frac{\partial}{\partial x^{l}} \left(\Gamma_{km}^{i} A_{i} \right) - \frac{\partial}{\partial x^{m}} \left(\Gamma_{km}^{i} A_{i} \right) \right\} \Delta f^{lm}. \tag{47.2}$$

A primer orden de aproximación, la ec.(45.4) significa que

$$\frac{\partial A_i}{\partial x^l} \approx \Gamma_{il}^n A_n, \tag{47.3}$$

dentro del contorno de integración. Sustituyendo la ec.(47.3) en la ec.(47.2) se obtiene que

$$\Delta A_{k} \approx \frac{1}{2} R^{i}_{klm} A_{i} \Delta f^{lm},$$
 (47.4)

en donde el tensor de curvatura o tensor de Riemann Rⁱklm de rango cuatro está dado por

$$R^{i}_{klm} = \frac{\partial \Gamma^{i}_{km}}{\partial x^{l}} - \frac{\partial \Gamma^{i}_{kl}}{\partial x^{m}} + \Gamma^{i}_{nl} \Gamma^{n}_{km} - \Gamma^{i}_{nm} \Gamma^{n}_{kl}.$$
 (47.5)

Las cantidades R^{i}_{klm} forman un tensor. Esto se debe a que como el lado izquierdo de la ec.(47.4) forma un vector, y Δf^{lm} es un tensor, entonces necesariamente R^{i}_{klm} es un tensor.

Tarea 16

(I) Si A_i es un vector covariante, define su segunda derivada covariante como $A_{i;k;l} \equiv (A_{i;k})_{;l}$ y muestra mediante calculo directo que

$$A_{i\cdot k\cdot l} - A_{i\cdot l\cdot k} = A_m R^m_{ikl}.$$
 (47.6)

(II) Muestra utilizando la ec.(47.6) (o de alguna otra manera, por ejemplo mediante el cálculo directo) y la linearidad de la derivada covariante, que si A_i y B_k son dos

vectores covariantes entonces

$$(A_{i}B_{k})_{\cdot l\cdot m} - (A_{i}B_{k})_{\cdot m\cdot l} = A_{n}B_{k}R^{n}_{ilm} + A_{i}B_{n}R^{n}_{klm}.$$
(47.7)

De aquí concluye que todo tensor covariante Π_{ik} satisface la relación

$$\Pi_{ik;l;m} - \Pi_{ik;m;l} = \Pi_{nk} R_{ilm}^{n} + \Pi_{in} R_{klm}^{n}.$$
(47.8)

En el caso de un espacio plano, los símbolos de Christoffel son idénticamente iguales a cero y por lo tanto el tensor de Riemann es igual a cero en todo el espacio. Debido a que $R^i{}_{klm}$ es un tensor, entonces si $R^i{}_{klm}=0$ en un sistema de referencia, este tensor será igual a cero en cualquier otro sistema de referencia. Esto quiere decir que cuando $R^i{}_{klm}=0$ en todo el espacio, entonces el espacio es plano. Inversamente, si $R^i{}_{klm}=0$ en todo el espacio entonces ΔA_k dado por la ec.(47.4) es cero y por lo tanto el transporte paralelo de un vector alrededor de un contorno cerrado lo regresa a su misma posición. En otras palabras, localmente el espacio es plano y como esto mismo puede hacerse para cualquier punto del espacio, entonces el espacio en su totalidad es Euclidiano. Esto muestra que $R^i{}_{klm}=0$ si y solo si el espacio es plano.

En el caso de un espacio curvo uno puede hacer $\Gamma^i_{kl}=0$ en una región suficientemente pequeña del espacio, pero las derivadas $\partial \Gamma^i_{kl}/\partial x^p$ no serán nulas en todo el espacio y por lo tanto R^i_{klm} no necesariamente es cero en todo el espacio.

Tarea 17

(I) El tensor de Riemann con todos sus índices abajo está dado por $R_{iklm} = g_{in}R^n_{klm}$. Muestra que

$$R_{iklm} = \frac{1}{2} \left\{ \frac{\partial^2 g_{im}}{\partial x^k \partial x^l} + \frac{\partial^2 g_{kl}}{\partial x^i \partial x^m} - \frac{\partial^2 g_{km}}{\partial x^i \partial x^l} - \frac{\partial^2 g_{il}}{\partial x^k \partial x^m} \right\} + g_{np} \left(\Gamma_{kl}^n \Gamma_{im}^p - \Gamma_{km}^n \Gamma_{il}^p \right). \tag{47.9}$$

De la ec. (47.9) se siguen las propiedades de simetría del tensor de Riemann

$$R_{iklm} = -R_{kilm} = -R_{ikml} = R_{lmik}.$$
 (47.10)

Utilizando las propiedades de antisimetría que se muestran en la ec.(47.10) se obtiene que cualquier componente que tenga los dos primeros índices repetidos, o los dos últimos índices repetidos es igual a cero. La ec.(47.10) implica también que

$$R_{iklm} + R_{imkl} + R_{ilmk} = 0. (47.11)$$

En un sistema de coordenadas galileano, la derivada covariante $()_{;k}$ se convierte en la derivada ordinaria $\partial/\partial x^k$ y los símbolos de Christoffel (pero no necesariamente sus derivadas) se anulan. Por lo tanto, en un sistema de coordenadas galileano

$$R^{n}_{ikl;m} = \frac{\partial R^{n}_{ikl}}{\partial x^{m}} = \frac{\partial^{2} \Gamma^{n}_{il}}{\partial x^{m} \partial x^{k}} - \frac{\partial^{2} \Gamma^{n}_{ik}}{\partial x^{m} \partial x^{l}}.$$
 (47.12)

De esta manera se ve que

$$R^{n}_{ikl;m} + R^{n}_{imk;l} + R^{n}_{ilm;k} = 0,$$
 (47.13)

para un sistema de referencia galileano. Sin embargo, debido a que Rⁱ_{klm} es un tensor, entonces la ec.(47.13) es válida para cualquier espacio curvo. La ec.(47.13) se conoce como la *identidad de Bianchi*.

Se define el tensor de Ricci R_{ik} como la contracción del primer y tercer índice del tensor de Riemann, es decir, utilizando la ec.(47.5) este tensor está dado por

$$R_{ik} \equiv g^{lm} R_{limk} = R^l_{ilk} = \frac{\partial \Gamma^l_{ik}}{\partial x^l} - \frac{\partial \Gamma^l_{il}}{\partial x^k} + \Gamma^l_{ik} \Gamma^m_{lm} - \Gamma^m_{il} \Gamma^l_{km}. \tag{47.14}$$

De esta última igualdad se ve que el tensor de Ricci es simétrico, es decir,

$$R_{ik} = R_{ki}.$$
 (47.15)

Finalmente definamos el escalar de Ricci o la curvatura escalar del espacio R como la contracción del tensor de Ricci, es decir,

$$R = R_i^i = g^{il}g^{km}R_{iklm} = R_{ik}^{ik}$$
. (47.16)

 ${\bf Copyleft} \ \ {\bf \textcircled{Sergio}} \ \ {\bf \textit{Mendoza}} < {\bf \textit{sergio}} \ \ {\bf \textcircled{Qastroscu.unam.mx}} >$

Puede mostrarse que la curvatura del espacio-tiempo es proporcional al escalar de Ricci. Utilizando la definición del escalar de Ricci de la ec.(47.16) y la identidad de Bianchi se sigue que el divergente del tensor de Ricci en coordenadas curvilíneas está dado por

$$R^{l}_{m;l} = \frac{1}{2} \frac{\partial R}{\partial x^{m}}.$$
 (47.17)

Lo que falta ahora es utilizar el principio de mínima acción para encontrar las ecuaciones del campo gravitacional. Justamente como hicimos para encontrar el segundo par de ecuaciones de Maxwell. En el caso de campos gravitacionales, esto no es tan directo y requiere cálculos que van un poco mas aya de nuestros objetivos en este curso. Por lo tanto únicamente mencionaremos los pasos básicos para encontrar estas ecuaciones.

El principio de mínima acción aplicado a campos nos dice que la variación δS de la acción total S es tal que

$$\delta S = \delta (S_m + S_f + S_{mf}) = 0,$$
 (47.18)

en donde $S_{\rm m}$ es la acción correspondiente a las partículas materiales que se mueven sobre el campo gravitacional dado y está dada por la ec.(46.1). La acción $S_{\rm f}$ es la acción del campo gravitacional y $S_{\rm mf}$ es la acción que representa a la interacción de las partículas materiales con el campo. Como ya mencionamos anteriormente, suponemos que la acción $\delta S_{\rm m}=0$ —pues es la trayectoria de las partículas dado el campo gravitacional. Es un resultado básico de la relatividad general, pero complicado, el mostrar que

$$\delta S_{\rm mf} = \frac{1}{2c} \int T_{ik} \delta g^{ik} \sqrt{-g} \, d\Omega, \qquad (47.19)$$

$$\delta S_{\rm f} = -\frac{c^3}{16\pi G} \int \left(R_{\rm ik} - \frac{1}{2}g_{\rm ik}R\right) \delta g^{\rm ik} \sqrt{-g} \, d\Omega, \tag{47.20} \label{eq:deltaS}$$

donde las integrales son tomadas sobre todo el espacio-tiempo. Sustituyendo estas dos últimas ecuaciones en la ec.(43.4) con $\delta S_m = 0$, se obtiene que

$$-\frac{c^3}{16\pi G}\int \left(R_{ik} - \frac{1}{2}g_{ik}R - \frac{8\pi G}{c^4}T_{ik}\right)\delta g^{ik}\sqrt{-g}\,d\Omega = 0. \tag{47.21}$$

Debido a que la métrica fue escogida de manera arbitraria, entonces la variación de la

misma, i.e. δg^{ik} es también arbitraria y por lo tanto necesariamente se obtiene que el término entre paréntesis de la ec.(47.21) es idénticamente igual a cero, es decir,

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik},$$
 (47.22)

que son las ecuaciones que satisface el campo gravitacional, y se denominan frecuentemente como las ecuaciones de Einstein.

El lado derecho de la ec.(47.22) es el tensor de energía-momento y vagamente podemos decir que representa a las masas del sistema. El lado izquierdo de esta misma ecuación representa la curvatura del espacio-tiempo. Las ecuaciones de Einstein nos dicen que la curvatura del espacio-tiempo y las masas están relacionadas de la manera particular que se muestra en la ec.(47.22). Mas aún, esta misma relación nos está diciendo que "las masas (lado izquierdo de la ec.(47.22)) le dicen al espacio-tiempo como curvarse (lado derecho de la ec.(47.22)".

Combinando la interpretación de la ecuación geodésica vista en la sección §46 con lo interpretado por las ecuaciones de Einsten, podemos decir que: "las masas le dicen al espacio como curvarse (ecuaciones de Einstein) y la curvatura del espacio le dice a las masas como moverse (ecuación geodésica)". Esta acción-reacción entre el espaciotiempo y las masas es de suma importancia y resulta tan compleja que las ecuaciones de Einstein no son lineales. Esto significa que el principio de superposición no es válido en relatividad general. En otras palabras, si g_{ik} y g'_{ik} son dos métricas que son soluciones a las ecuaciones de Einstein, entonces la suma $g_{ik} + g'_{ik}$ no es necesariamente una solución de las ecuaciones de Einstein.

Las ecuaciones de Einstein con uno de sus índices arriba toman la forma

$$R_{i}^{k} - \frac{1}{2}R\delta_{i}^{k} = \frac{8\pi G}{c^{4}}T_{i}^{k}.$$
 (47.23)

La contracción de esta ecuación es

[†]En el caso del electromagnetismo, el equivalente a la ecuación geodésica es la fuerza de Lorentz y el equivalente a las ecuaciones de Einstein, son las ecuaciones de Maxwell. En este caso uno puede decir que la distribución en el espacio de las cargas le dice a los campos electromagnéticos como comportarse (ecuaciones de Maxwell) y la intensidad de los campos electromagnéticos le dice a las cargas como moverse (ecuación de Lorentz).

$$R = -\frac{8\pi G}{c^4} T_i^i, (47.24)$$

y por lo tanto, sustituyendo este valor en la ec.(47.22) se obtiene otra forma para las ecuaciones de Einstein

$$R_{ik} = \frac{8\pi G}{c^4} \left(T_{ik} - \frac{1}{2} T_p^p g_{ik} \right). \tag{47.25}$$

El divergente generalizado (contracción de la derivada covariante) de la ec.(47.23) está dado por

$$R^{k}_{i;k} - \frac{1}{2}R_{;k} = \frac{8\pi G}{c^{4}}T^{k}_{i;k}.$$
 (47.26)

Utilizando la ec.(47.17) obtenemos entonces que la divergencia en coordenadas curvilíneas del tensor de energía-momento es idénticamente igual a cero, es decir,

$$T^{i}_{k:i} = 0.$$
 (47.27)

Esta última relación es clara, pues al transformar a un sistema de coordenadas curvilíneo la ec.(20.6) que debe satisfacer el tensor de energía-momento en un espacio plano, se debe obtener la ec.(47.27).

En ausencia de campos y materia, i.e. en el vacío, la ec.(47.26) implica que $R_{ik}=0$. Esto no necesariamente significa que el espacio-tiempo es plano pues para tal condición es necesario que el tensor de Riemman $R^i{}_{klm}$ sea idénticamente igual a cero en todo el espacio.

§48. Espacios isotrópicos curvos

A manera de ejemplo y con la idea de aplicar los resultados obtenidos en esta sección a cosmología, calculemos la métrica para espacios isotrópicos curvos, es decir, de curvatura constante. De hecho, puede mostrarse que un espacio isotrópico es necesariamente homogéneo. Esto es claro pues si cada punto del espacio se ve igual que cualquier otro en todas las posibles direcciones, entonces dada una dirección especial el espacio se verá igual en cualquier punto sobre una recta que represente esta dirección.

Comencemos por encontrar la métrica del espacio isotrópico mas simple que existe, la esfera. La manera mas simple de encontrar las propiedades de este espacio de dos dimensiones es sumergiéndolo en un espacio de una dimensión mayor, es decir, de tres dimensiones. Esto se muestra en la fig.(VI.4). Sobre la superficie de la esfera definamos dos coordenadas, ρ y φ . La coordenada ρ corresponde a la distancia medida desde el polo norte de la esfera hasta un determinado punto P. Esta distancia corresponde a la longitud de una geodésica medida desde el polo norte y las geodésicas en una esfera corresponden a segmentos de círculos con origen en el centro de la esfera. La coordenada φ es el ángulo azimutal.

Un elemento de longitud dl sobre la superficie de la 2-esfera medido a partir del punto P está dado por $dl^2 = d\rho^2 + d\zeta^2$. Si θ es el ángulo polar, es claro entonces que $d\rho = R_c d\theta$ y que $d\zeta = R_c \sin\theta \, d\phi$. Por esta razón el elemento de longitud sobre la superficie de la 2-esfera está dado por

$$dl^2 = R_c^2 d\theta^2 + R_c^2 \sin^2\theta d\phi^2. \tag{48.1}$$

Una variedad cualquiera de dos dimensiones puede aproximarse localmente a la superficie de la 2-esfera. Si R_c es el radio de la esfera que aproxima a la superficie, i.e. el radio de curvatura de la superficie evaluada en el punto de aproximación, entonces la métrica de la variedad de dos dimensiones está dada por la ec.(48.1). Cuando el espacio es isotrópico el radio de curvatura es una constante en todo el espacio.

Escribamos la métrica de la ec.(48.1) de manera diferente introduciendo la coordenada de la medida de la distancia χ definida por

$$\chi \equiv R_c \sin\left(\frac{\rho}{R_c}\right). \tag{48.2}$$

Con esto, la ec.(48.1) toma la forma

$$\mathrm{dl}^2 = \frac{\mathrm{d}\chi^2}{1 - \kappa\chi^2} + \chi^2 \mathrm{d}\phi^2. \tag{48.3}$$

El elemento de distancia $\chi d\varphi$ es ortogonal al elemento de distancia $d\rho$ como lo muestra la ec.(48.3). Por lo tanto, la distancia diametral angular $\chi d\varphi$ representa la longitud de un segmento de línea que subtiende un ángulo φ a la distancia ρ .

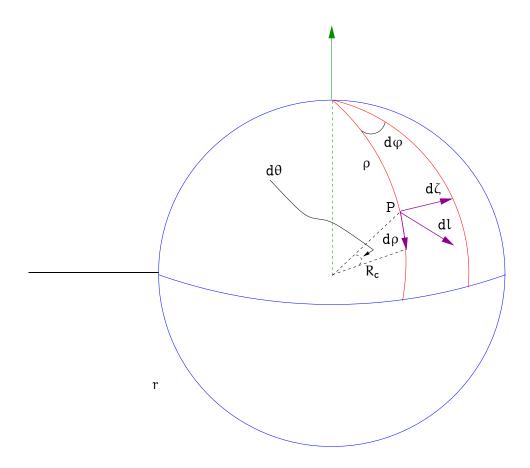


Figura VI.4: Sobre la 2-esfera se definen dos coordenadas, ρ y ϕ . La coordenada ρ es medida a partir del polo norte y se mueve sobre un circulo máximo hacia abajo como lo muestra la figura. La coordenada ϕ corresponde al ángulo azimutal. La coordenada θ es el ángulo polar y R_c es el radio de la esfera. Dado un punto P sobre la esfera, el elemento de longitud dl de la misma está dado por $dl^2 = d\rho^2 + d\zeta^2$.

Consideremos ahora un espacio isotrópico de tres dimensiones. Las coordenadas naturales a utilizar son la coordenada radial ρ , el ángulo polar θ y el ángulo azimutal φ . Cualquier superficie de dos dimensiones contenida en un espacio de tres dimensiones isotrópico es también isotrópica y su métrica está dada por la ec.(48.3). En coordenadas esféricas cualquier desplazamiento angular d Ω –en donde Ω es el ángulo sólido– en la dirección ortogonal a la dirección radial está dado por

$$d\Omega^2 = d\theta^2 + \sin^2\theta \, d\varphi^2,\tag{48.4}$$

Con esto y generalizando la ec.(48.1), el elemento de longitud para un espacio de tres dimensiones isotrópico está dado por

$$dl^2 = d\rho^2 + R_c \sin^2\left(\frac{\rho}{R_c}\right) d\Omega^2 = \frac{d\chi^2}{1 - \kappa \chi^2} + \chi^2 d\phi^2. \tag{48.5}$$

La métrica de Minkowski para cualquier espacio curvo isotrópico queda entonces determinada de la siguiente manera

$$ds^{2} = c^{2}dt^{2} - d\rho^{2} - R_{c}\sin^{2}\left(\frac{\rho}{R_{c}}\right)d\Omega^{2} = c^{2}dt^{2} - \frac{d\chi^{2}}{1 - \kappa\chi^{2}} - \chi^{2}d\phi^{2}.$$
 (48.6)

Otra manera de encontrar la métrica del 3-espacio isotrópico, descrita por la ec.(48.5) es la siguiente. La métrica del 3-espacio está dada por la ec.(44.8). Debido a la isotropía del espacio, el tensor de Riemman $^{(3)}R^{\alpha}{}_{\beta\eta\theta}$ del tres espacio debe ser únicamente expresable en términos de tensores que no dependan del lugar donde se encuentren y/o que tengan una dirección privilegiada. Los dos tensores que satisfacen esta condición son el tensor de Levi-Civita $\epsilon_{\alpha\beta\eta}$ y el tensor métrico $\gamma_{\alpha\beta}$. Puede mostrarse que el tensor de Riemman de un espacio isotrópico depende únicamente del tensor métrico y por lo tanto tiene la forma

$$^{(3)}R_{\alpha\beta\eta\theta} = \kappa \left(\gamma_{\alpha\eta}\gamma_{\beta\theta} - \gamma_{\alpha\theta}\gamma_{\eta\beta} \right), \tag{48.7}$$

en donde κ es la curvatura del tres espacio como veremos mas abajo. Sin embargo esto es claro puesto que el tensor de Ricci en este caso está dado por $R_{\alpha\beta}=2\kappa\gamma_{\alpha\beta}$ y por lo tanto el escalar de Ricci (o la curvatura escalar) está dada por

$$R = 6\kappa. \tag{48.8}$$

Para calcular la métrica del 3-espacio isotrópico consideremos una analogía. Identifiquemos al tres-espacio con una hiperesfera sumergida en un espacio de cuatro dimensiones. Esto es como el mapeo uno a uno de todos los puntos del plano euclidiano a la superficie de la dos esfera que se utiliza extensamente en el estudio de la variable compleja. La hiperesfera tiene un radio de curvatura R_c positiva y su ecuación analítica satisface la

igualdad

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = R_c^2,$$
 (48.9)

en donde x_1 , x_2 , x_3 , y x_4 representan coordenadas del cuatro espacio. Cabe hacer notar que este cuatro espacio no tiene nada que ver con el espacio-tiempo. Es simplemente un cuatro-espacio euclidiano con signatura (+,+,+,+) cuya métrica está dada por

$$dl^2 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2. (48.10)$$

Sustituyendo la ec.(48.9) en la ec.(48.10) se obtiene la métrica de la 3-esfera

$$dl^{2} = dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} + \frac{(x_{1}dx_{1} + x_{2}dx_{2} + x_{3}dx_{3})^{2}}{R_{c}^{2} - x_{1}^{2} - x_{2}^{2} - x_{3}^{2}}.$$
 (48.11)

Ahora bien, debido a que el escalar de Ricci $^{(3)}R_{\alpha\beta}$ tiene la misma forma en todo el tres-espacio isotrópico, entonces basta con calcularlo en algún punto, digamos cerca del origen en donde $R_c^2-x_1^2-x_2^2-x_3^2\approx R_c^2$. Así, la ec.(48.11) implica que el tensor métrico cerca del origen está dado por

$$\gamma_{\alpha\beta} = \delta_{\alpha\beta} + \frac{\kappa_{\alpha}\kappa_{\beta}}{R_{c}^{2}}.$$
 (48.12)

De esta ecuación se sigue que la primera y segunda derivada del tensor métrico $\gamma_{\alpha\beta}$ evaluadas en el origen están dadas respectivamente por

$$\frac{\partial \gamma_{\alpha\beta}}{\partial x_{\lambda}}\Big|_{\text{origen}} = 0, \qquad \frac{\partial^{2} \gamma_{\alpha\beta}}{\partial x_{\nu} \partial x_{\lambda}} = \frac{1}{R_{c}^{2}} \left(\delta_{\nu\alpha} \delta_{\beta\lambda} + \delta_{\beta\nu} \delta_{\lambda\alpha}\right). \tag{48.13}$$

Utilizando las ecs. (48.12)-(48.13) se sigue que los símbolos de Christoffel, dados por la ec. (45.25), evaluados en el origen satisfacen las siguientes expresiones

$$\Gamma_{\alpha\beta\eta} = 0, \quad \frac{\partial\Gamma_{\alpha\beta\eta}}{\partial x_{\lambda}} = \frac{\gamma_{\alpha\lambda}\delta_{\beta\eta}}{R_{c}^{2}}.$$
 (48.14)

Con esto, el tensor de Ricci dado por la ec. (47.14) evaluado cerca del origen está dado por

$$R_{\alpha\beta} = \frac{1}{R_c^2} \left(\gamma_{\eta\eta} \delta_{\alpha\beta} - \gamma_{\eta\alpha} \delta_{\eta\beta} \right), \tag{48.15}$$

y por lo tanto el tensor de Ricci evaluado en el origen está dado por

$$R_{\alpha\beta}\Big|_{\text{origen}} = \frac{2\delta_{\alpha\beta}}{R_c^2}.$$
 (48.16)

A partir de la ec.(48.16) se sigue que el escalar de Ricci está dado por $R=6/R_c^2$. Comparando esto con la ec.(48.8) se sigue entonces que

$$\kappa = \frac{1}{R_c^2},\tag{48.17}$$

es decir, κ representa la curvatura gaussiana del 3-espacio κ y R_c el radio de curvatura.

En lugar de trabajar con coordenadas cartesianas x_1 , x_2 , x_3 y x_4 utilicemos coordenadas "esféricas" χ , θ , y φ definidas por

$$x_1 = \chi \sin \theta \cos \varphi,$$
 $x_2 = \chi \sin \theta \sin \varphi,$ $x_3 = \chi \cos \theta.$ (48.18)

Para convertir el elemento de longitud de la ec.(44.7) a estas coordenadas esféricas, notemos antes que este elemento puede reescribirse como

$$dl^{2} = dx_{\alpha}dx_{\alpha} + \frac{(x_{\alpha}dx_{\alpha})^{2}}{R_{c}^{2} - x_{\alpha}x_{\alpha}} = (d\mathbf{r} \cdot d\mathbf{r})^{2} + \frac{(\mathbf{r} \cdot d\mathbf{r})^{2}}{R_{c}^{2} - \mathbf{r} \cdot \mathbf{r}},$$
(48.19)

con r el vector posición. Debido a que el lado derecho de la ec.(48.19) es una expresión vectorial, esta misma es válida en cualquier sistema de coordenadas. Por ejemplo, en el sistema de coordenadas esféricas de la ec.(48.18) para el cual $dr = e_{\chi} d\chi + e_{\theta} \chi d\theta + e_{\varphi} \chi \sin\theta d\varphi$ se obtiene entonces que el intervalo de longitud espacial en coordenadas esféricas para un 3-espacio isotrópico está dado por

$$dl^{2} = \frac{d\chi^{2}}{1 - r^{2}/R_{c}^{2}} + \chi^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right), \tag{48.20}$$

que coincide con la ec.(48.5).

A pesar de que la ec. (48.20) fue obtenida para un espacio isotrópico de curvatura positiva, mediante una continuación analítica puede hacerse valido para cualquier espacio de curvatura negativa o cero.

Capítulo VII

Agujeros negros

§49. Métrica de Schwarzschild

Un año después de la publicación de la teoría de la relatividad general por Einstein la primera solución a las ecuaciones del campo gravitacional fue encontrada. Fue Schwarzschild en 1916 el que encontró la solución exacta al campo gravitacional alrededor de una masa puntual —el equivalente a la ley de Newton de gravitación universal. Más tarde, Birkoff mostró que si se considera una estrella idealizada tal que esta misma pueda considerarse como una bola homogénea de fluido con sin presión entonces la métrica fuera de la estrella es justamente la dada por la solución de Schwarzschild. Esto es el equivalente del teorema de Newton para una masa homogénea con simetría radial (cf. sección §6).

El campo gravitacional con simetría central se refiere no únicamente al campo producido por una distribución con simetría central estático. La métrica debe ser también valida para cualquier movimiento que la materia central tenga siempre y cuando lo haga de manera simétrica. Tal movimiento puede llevarse a cabo siempre y cuando la velocidad de cada partícula que conforma la masa en cuestión sea llevada a lo largo de la dirección radial.

Resulta pues que la métrica que describe al campo gravitacional en este caso está dada por

$$ds^{2} = \left(1 - \frac{2GM}{rc^{2}}\right)c^{2}dt^{2} - \frac{dr^{2}}{\left(1 - \frac{2GM}{rc^{2}}\right)} - r^{2}d\Omega^{2}.$$
 (49.1)

en donde $d\Omega^2=d\theta^2+\sin^2\theta d\phi^2$ es el cuadrado del elemento de ángulo sólido $\Omega.$ Las

coordenadas r, θ y ϕ son adecuadas para un observador que se localiza lejos del origen r=0.

De la ec.(49.1) se sigue que un intervalo de tiempo Δt_1 está dado por $\sqrt{(1-2GM/rc^2)\Delta t}$. Este calculo ya había sido hecho en el capítulo anterior y vimos que el intervalo de tiempo medido por relojes sincronizados está justamente dado por este valor. En otras palabras, la métrica de Schwarzschild toma en cuenta de manera exacta la sincronización de relojes a lo largo del espacio-tiempo curvilíneo producido por una distribución de materia simétrica. Cabe hacer notar también que la coordenada r no representa la distancia radial como lo haría en el caso de un espacio Euclídeo. De hecho, la distancia propia -la geodésica del punto r al centro de la distribución de masa- está dada por

$$\int_0^r \frac{dr}{\left(1 - \frac{2GM}{rc^2}\right)}.$$

Por otra parte, comparación directa entre el intervalo espacial de la métrica de Schwarzschild, eq.49.1 y el correspondiente para espacios curvos isotrópicos de Minkowski dado por la eq.(48.6) implica que podemos escribir la curvatura $\kappa = 2GM/r^3c^2$ localmente. Ahora bien, como la curvatura κ es igual al inverso del cuadrado del radio de curvatura R_c^2 , entonces podemos escribir

$$\frac{r^2}{R_c^2} = \frac{2GM}{rc^2},$$

que es el parámetro gravitacional χ que habíamos definido al principio del el capítulo anterior. De aquíí se sigue que el radio de curvatura decrece –curvatura del espacio aumenta–a distancias mas cercanas del centro de la distribución de masas central. Evidentemente, si el sistema que produce las masas es suficientemente $compacto^{\dagger}$ la curvatura del espaciotiempo es de consideración y justamente es para estos objetos donde una descripción relativista dada por la métrica de Schwarzschild debe ser utilizada.

En unas secciones mas discutiremos que es un agujero negro y como la métrica de

[†]En lo sucesivo denominaremos objetos compactos a todo aquel objeto astronómico para el cual los efectos relativistas del campo gravitacional que produce son importantes. En otras palabras, estos son objetos que poseen una masa compactada en un volumen lo suficientemente pequeño como para que la curvatura del espacio-tiempo producida por los mismos sea significante. Ejemplos de estos objetos son las estrellas de neutrones (observadas como pulsares) y los agujeros negros de todos tamaños: atómicos, estelares y supermasivos.

Schwarzschild automáticamente predice la existencia de los mismos. No obstante, es importante mencionar como en 1783 John Mitchell de la Universidad de Cambridge predijo la existencia de objetos gravitacionales invisibles para cualquier observador externo, es decir, objetos para en los cuales la luz no escapa. La velocidad de escape de la superficie de un objeto gravitacional de masa M se define como la velocidad necesaria v que una masa de prueba -como un cohete- m necesita para llegar a infinito. En otras palabras, la energía total de esta masa de prueba debe ser nula: $E_{\rm tot} = mv^2/2 - GmM/r = 0$, siendo r el radio del objeto gravitacional de masa M. Si la velocidad de escape necesaria para salir de este objeto es justamente la velocidad de la luz (recuerda que desde tiempos de Newton ya se pensaba que la gravedad debía también alterar las trayectorias de los fotones) entonces $2GM/rc^2 = 1$. El número $2GM/c^2 \equiv r_S$ se denomina radio gravitacional o radio de Schwarzschild. De esta forma, los objetos que poseen r < r_S aparecen oscuros para cualquier observador externo, pues ni siquiera la luz puede escapar de los mismos. Fue 200 años mas tarde cuando John Wheeler en la Universidad de Princeton, en la década de los 1960's bautizó a estos objetos con el término de agujeros negros. Ya tendremos mas oportunidad de hablar mas con respecto a estos objetos, pero concentrémonos por el momento en analizar las propiedades de la métrica de Schwarzschild.

§50. Órbitas alrededor de objetos compactos

Sabiendo el valor del tensor métrico $g_{\mu\nu}$ dado por la ec.(49.1) es fácil calcular las ecuaciones de movimiento que deben cumplir partículas de prueba que se mueven bajo la influencia gravitacional del objeto central. Basta sustituir los valores de g_{ik} en la ecuación geodésica $Du^i=0$. No obstante, hagamos el cálculo de una manera directa utilizando nuestros conocimientos de mecánica Lagrangiana.

Recordemos que la acción $S=-mc\int ds$, puede reescribirse como $S=-mc\int \sqrt{(g_{ik}\dot{x}^i\dot{x}^k)}d\tau$ en donde $\dot{[}$ representa a la derivada con respecto al tiempo propio $d\tau\equiv ds/c=g_{00}\,dx^0/c$. El pedir que la variación $\delta S=0$ es equivalente a pedir que $\delta\int\mathbb{G}(x^k,\dot{x}^k)d\tau=0$, donde $\mathbb{G}(x^k,\dot{x}^k)\equiv\sqrt{(g_{ik}\dot{x}^i\dot{x}^k)}=c$. De tal manera que podemos identificar a la función \mathbb{G} con el lagrangiano del sistema. Así pues, las ecuaciones de movimiento están dadas por las ecuaciones de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\partial \mathbb{G}}{\partial \dot{x}^k} \right) = \frac{\partial \mathbb{G}}{\partial x^k}.\tag{50.1}$$

Mas abajo veremos que el momento angular se conserva y como la conservación del momento angular (no-relativista y relativista) implica que el vector velocidad y el "radio vector" deben ser ortogonales a este, entonces el movimiento de la partícula de prueba debe llevarse en un plano. Por comodidad escojamos ese plano de tal manera que el ángulo polar $\theta = \pi/2$. De esta manera, al calcular la dependencia variacional de la función $\mathbb G$ con $\theta = \pi/2$ se obtiene

$$\mathbb{G} = \left\{ \alpha c^2 \dot{t}^2 - \dot{r}^2 / \alpha - r^2 \phi^2 \right\}^{1/2} \tag{50.2}$$

donde $\alpha \equiv (1-r/r_S)$. Sustituyendo la ec.(50.2) en las ecuaciones de Euler-Lagrange se obtiene que $\partial \mathbb{G}/\partial t = 0$, es decir, la cantidad $\partial \mathbb{G}/\partial t = \text{const.}$ De aquí y sustituyendo el valor de $\mathbb{G} = c$ en el resultado se obtiene que

$$\alpha \dot{t} = const \equiv k$$
 (50.3)

En todo sistema mecánico estacionario en la coordenada temporal (i.e. $\partial/\partial t = 0$) la energía es una cantidad conservada. Así pues, podemos identificar a la energía con la constante k de la ec.(50.3).

Por otra parte, las ecuaciones de Euler-Lagrange implican que $\partial \mathbb{G}/\partial \dot{\phi}$ es una cantidad conservada. De aquí que

$$r^2\dot{\phi} = const \equiv h.$$
 (50.4)

La cantidad h es proporcional al momento angular especifico del sistema. Sustituyendo las ecs.(50.3)-(50.4) en la ec.(50.2) se obtiene que

$$\frac{1}{2}m\dot{r}^2 + \frac{1}{2}m\alpha(r\dot{\phi})^2 - \frac{GMm}{r} = mc^2(k^2 - 1).$$
 (50.5)

Esta ecuación es muy similar a la que se obtiene en mecánica Newtoniana

$$\frac{1}{2}m\dot{r}^2 + \frac{1}{2}m(r\dot{\phi})^2 - \frac{GMm}{r} = E_{tot}.$$
 (50.6)

De aquí que podamos identificar a la energía total del sistema en el caso relativista como el lado derecho de la ec. (50.5). Cabe hacer notar que la diferencia principal entre el caso relativista y el no-relativista es el factor de α que aparece multiplicando a la velocidad angular de la partícula de prueba. Expandiendo la ec. (50.5) obtenemos

$$m\dot{r}^2 + m\frac{h^2}{r^2} - \frac{2GMm}{r} - \frac{2GMmh^2}{r^3c^2} = 2mc^2(k^2 - 1).$$
 (50.7)

Para entender el significado de esta relación, comparémosla con su equivalente Newtoniano

$$m\dot{r}^2 + m\frac{h^2}{r^2} - \frac{2GMm}{r} = m\dot{r}_{\infty}^2,$$
 (50.8)

donde \dot{r}_{∞} es la velocidad de la partícula de prueba en infinito. Aparte de las diferencias entre el significado de las coordenadas entre ambas ecuaciones, el término adicional $-2GMh^2/r^3c^2$ en la ecuación relativista hace una gran diferencia en ambos casos. Este término representa un potencial atractivo que se incrementa fuertemente a medida que se alcanzan distancias cercanas a las masas que producen el campo gravitacional. Para analizar en detalle esta diferencia, escribamos la ec.(50.8) como

$$\dot{\mathbf{r}}^2 = \mathbf{c}^2 \left\{ -\frac{\eta}{(\mathbf{r}/\mathbf{r_S})^2} + \frac{1}{(\mathbf{r}/\mathbf{r_S})} \right\} + \dot{\mathbf{r}}_{\infty}^2, \tag{50.9}$$

donde la cantidad adimensional $\eta \equiv h^2/r_S^2c^2$. El término entre corchetes representa un potencial Φ constituido por dos partes, un potencial centrifugo proporcional a $1/r^2$ y un potencial gravitacional Newtoniano proporcional a 1/r. La variación del potencial Φ como función de r/r_S se muestra en la fig.(VII.1). Si una partícula de prueba es soltada desde infinito (punto A') con una velocidad nula, entonces la posible trayectoria de la misma puede ocurrir a lo largo de la curva mostrada hasta alcanzar el punto A. Justamente en el punto A, la partícula tiene una velocidad nula y no es posible para la misma alcanzar el origen de coordenadas. Las trayectorias cerradas están dadas cuando \dot{r}_∞^2 es negativo y así la partícula puede moverse entre los puntos B y B' sobre la curva. Las órbitas hiperbólicas corresponden a valores positivos de \dot{r}_∞^2 y están representadas por los puntos debajo del eje horizontal en el diagrama. El punto de máximo acercamiento al origen de coordenadas ocurre en el punto C que corresponde al punto en el que la velocidad radial $\dot{r}=0$.

De la misma manera, para el caso relativista, la ec. (50.7) puede escribirse como

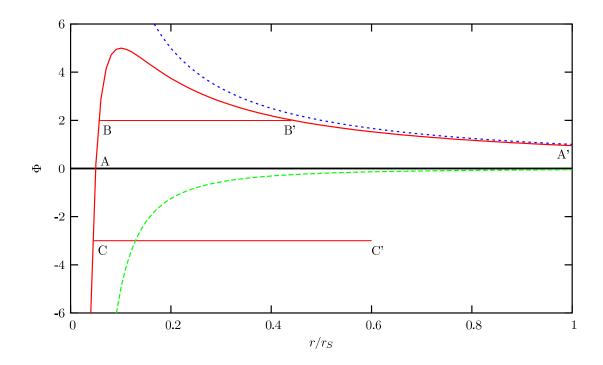


Figura VII.1: Variación del potencial gravitacional y centrifugo Φ (ver texto) en un campo gravitacional Newtoniano como función del radio r (eje horizontal) medido en unidades del radio gravitacional r_S . Las curvas mostradas en la gráfica corresponden a las funciones $-\eta r_S^2/r^2$, $-\Phi$ y r_S/r de abajo hacia arriba respectivamente.

$$\dot{r}^2 - c^2(k^2 - 1) = c^2 \left\{ -\frac{\eta}{(r/r_S)^2} + \frac{1}{(r/r_S)} + \frac{\eta}{(r/r_S)^3} \right\}$$
 (50.10)

El análisis es muy parecido al hecho para el caso Newtoniano. Sin embargo, el término proporcional a $1/r^3$ actúa como un potencial centrifugo atractivo que se incrementa mas rápido con el decremento de r que como lo hace el término centrífugo repulsivo que es proporcional a $1/r^2$. Por lo tanto, cuando la partícula alcanza regiones suficientemente cercanas a r=0, este término centrifugo atractivo debe ser dominante sobre el comportamiento de la misma. En otras palabras, una partícula que se acerca lo suficiente al centro del campo gravitacional es capaz de alcanzar el origen del mismo. Para analizar con un poco mas de detalle este hecho, el potencial Φ (dado por el término entre corchetes de la ec.(50.10)), se muestra como función de $r/r_{\rm S}$ en la fig.(VII.2). Algunas de las posibles

trayectorias, que son funciones de η muestran que existen situaciones peculiares y distintas al comportamiento no-relativista. La trayectoria de una partícula que deja el reposo en A' y alcanza el punto A' es similar al caso Newtoniano. Justo en A, la velocidad de la partícula es puramente angular. La diferencia es que existen valores de η suficientemente pequeños los cuales hacen que una partícula que se deja en reposo desde infinito sea capaz de alcanzar el origen. El caso límite entre estos dos casos está dado por la trayectoria de A' a D. A pesar de que la partícula alcanza la posición D con velocidad radial nula, es capaz de alcanzar el origen r=0. Existen partículas que tienen trayectorias cerradas elípticas (correspondientes a $k^2-1<0$) como el segmento de la curva que se muestra entre los puntos B y B'. A medida que η decrece estos dos puntos convergen a un punto de inflexión E de la curva para el cual la trayectoria es una circunferencia que corresponde a la *última órbita estable* alrededor de un agujero negro. Las órbitas hiperbólicas corresponden se alcanzan cuando $k^2-1>0$. En este caso el punto de máximo acercamiento al origen de coordenadas corresponde al punto C del diagrama.

Tarea 18

- (I) Muestra que el caso límite que corresponde al punto D en la fig.(VII.2) corresponde a valores de $\eta=4$ y $r=2r_S$.
- (II) Muestra que el punto E en la misma figura corresponde a la última órbita circular estable para la cual $d^2\Phi/dr^2 = 0$. Calcula que para este caso $\eta = 3$ y $r = 3r_S$.

§51. Perihelio de órbitas planetarias

Escribiendo $\dot{r}=(dr/d\phi)(d\phi/d\tau)$ en la ec.(50.7) y utilizando la ec.(50.4), se obtiene que

$$\left(\frac{h}{r^2}\frac{dr}{d\phi}\right)^2 + \frac{h^2}{r^2} - \frac{2GM}{r} - \frac{2GMh^2}{r^3c^2} = c^2(k^2-1).$$

En mecánica clásica se llego a una relación similar y el cambio usual para hacer es $\mathfrak{u}=1/r,$ de tal forma que

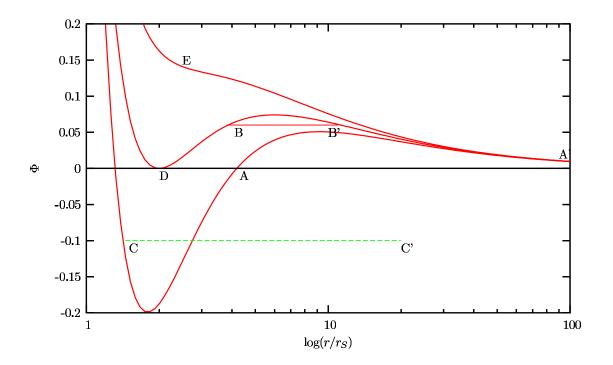


Figura VII.2: Variación del potencial gravitacional y centrifugo Φ (ver texto) en un campo gravitacional relativista como función del logaritmo del radio r en unidades del radio gravitacional $r_{\rm S}$. De abajo hacia arriba, las curvas muestran valores del parámetro $\eta=5.5,~4.0,~2.7$.

$$\left(\frac{du}{d\phi}\right)^2 + u^2 - \frac{2GM}{h^2}u - \frac{2GM}{c^2}u^3 = \frac{c^2}{h^2}(k^2 - 1). \tag{51.1}$$

Diferenciando esta relación con respecto al ángulo azimutal se obtiene

$$\frac{d^2u}{d\varphi^2} + u = \frac{GM}{h^2} + \frac{3GM}{c^2}u^2.$$
 (51.2)

Si hubiésemos hecho este análisis de manera Newtoniana, utilizando la ec.(50.6), el resultado obtenido sería

$$\frac{\mathrm{d}^2 u}{\mathrm{d} \varphi^2} + u = \frac{\mathrm{G} M}{\mathrm{h}^2}.\tag{51.3}$$

La diferencia entre la ec.(51.2) y la ec.(51.3) es el término proporcional a u^2 que aparece en la versión relativista. Esta corrección es bastante pequeña para el caso de la tierra girando alrededor del sol. Esto puede verse comparando los términos que aparecen del lado derecho de la ec.(51.2), i.e.

$$\frac{(3GM/c^2)u^2}{(GM/h^2)} = \frac{3u^2h^2}{c^2} = 3\frac{v^2}{c^2},$$
 (51.4)

para el caso de una órbita circular. Debido a que la velocidad de la tierra alrededor del sol es de $30 \,\mathrm{km/s}$, la corrección relativista es de tan solo 3 partes en 10^8 . Aunque esto parece un efecto pequeño resultó ser uno de los experimentos cruciales para comenzar a tomar en serio a la teoría general de la relatividad. En el caso de Mercurio su órbita alrededor del sol tiene una elipticidad de $\epsilon \approx 0.2$. El efecto de la corrección relativista resulta en hacer que el perihelio (la distancia mas corta entre la órbita del planeta y el sol) de Mercurio "rota" poco a poco cada órbita completada por el planeta.

Tarea 19

Considera una órbita circular. En el caso Newtoniano esto significa que utilizando la ec.(51.3) se obtiene que $d^2u/d\phi^2=0$, de tal forma que $u=GM/h^2$. Esta es una solución a orden cero de la ec.(51.2) para órbitas circulares.

(1) Reescribe la ec.(51.2) para el caso en que u es una corrección a la solución a cero orden, es decir para cuando u = GM/h² + g(φ). Muestra que la ecuación tiene la forma de una ecuación de oscilador harmónico no-homogénea y que la "frecuencia" adimensional ω de este oscilador está dada por

$$\omega^2 = 1 - \left(\frac{3GM}{c^2}\right) \left(\frac{2GM}{h^2}\right).$$

- (II) Muestra que el periodo $T=2\pi/\omega=2\pi(1+3G^2M^2/c^2h^2)$.
- (III) Finalmente muestra que el cambio fraccional de la fase por cada órbita alrededor del sol $(T-2\pi)/2\pi = d\phi/2\pi$ está dado por

$$\frac{\mathrm{d}\varphi}{2\pi} = \frac{3}{4} \left(\frac{\mathrm{c}}{v}\right)^2 \left(\frac{\mathrm{r}_S}{\mathrm{r}}\right)^2.$$

El cálculo para órbitas elípticas muestra que

$$\frac{\mathrm{d}\varphi}{2\pi} = \frac{3}{4} \left(\frac{\mathrm{c}}{v}\right)^2 \left(\frac{\mathrm{r_S}}{\mathrm{r}}\right)^2 \frac{1}{1 - \epsilon^2}.\tag{51.5}$$

Los valores de Mercurio son $r=5.8\times 10^{10}$ m, T=88 días , $r_S=3\,\mathrm{km}$ y $\epsilon=0.2$. De esta manera se encuentra que el avance del perihelio de Mercurio (¡hazlo!) es de 43 arcsec por siglo. Este resultado fue uno de los grandes logros de la relatividad general. En 1859 Le Verrier encontró que una vez eliminados los efectos de las perturbaciones de los planetas vecinos a Mercurio un avance del perihelio del mismo de 43 arcsec por siglo se observaba. Einstein demostró esto al publicar su primer artículo de la teoría general de la relatividad.

En el sistema solar, el efecto de precesión de órbitas es pequeño. Sin embargo para el caso de sistemas de estrellas binarias compactas el efecto se amplifica. El ejemplo mas importante es el pulsar binario PSR 1913+16 para el cual su periodo orbital es de 7.75 hrs y la elipticidad de las estrellas con respecto a sus órbitas alrededor del centro de masa es de $\epsilon=0.617$. En este caso el avance del perihelio de sus órbitas puede utilizarse incluso para medir la masa de las estrellas.

§52. Partículas y rayos de luz cerca de agujeros negros

Consideremos ahora una partícula de prueba que cae hacia r = 0 de manera radial dejando el reposo en infinito. La ecuación de energía, ec.(50.7), con h = 0 es entonces

$$m\dot{r}^2 - \frac{2GMm}{r} - \frac{2GMmh^2}{r^3c^2} = mc^2(k^2 - 1) = E_{tot} = 0.$$
 (52.1)

De aquí que el tiempo propio que tarda la partícula de prueba en llegar al origen a partir de una posición r_1 es

$$\tau_2 - \tau_1 = \int_{\tau_1}^{\tau_2} d\tau = -\int_{r_1}^{0} \frac{r^{1/2}}{(2GM)^{1/2}} dr = \left(\frac{2}{9GM}\right)^{1/2} r_1^{3/2}.$$
 (52.2)

Es evidente entonces que el tiempo propio que tarda una partícula en caer a r=0 es finito. Nada peculiar ha pasado al alcanzar el radio de Schwarzschild r_S . Sin embargo, un observador en infinito observa un comportamiento sumamente distinto. Para analizar esto, reescribamos la métrica de Schwarzschild, eq.(49.1) de la siguiente manera: $dt^2 =$

 $\alpha^{-1}d\tau^2 + (\alpha c)^{-2}$. Así, sustituyendo este valor para $d\tau$ en la ec.(52.2) se obtiene que

$$dt = -\frac{1}{c} \left(\frac{r}{r_S}\right)^{1/2} \frac{dr}{1 - r_S/r}.$$

Integrando nuevamente desde r₁ hasta r₀ se obtiene

$$t_2 - t_1 = \int_{t_1}^{t_2} dt = -\frac{1}{cr_s^{1/2}} \int_{r_1}^{0} \frac{r^{3/2}}{(r - r_s)} dr.$$
 (52.3)

A medida que r se aproxima a r_S, el tiempo tiende a infinito. En otras palabras, para un observador externo, una partícula que cae hacia un objeto gravitacional toma un tiempo infinito en hacerlo a pesar de que el tiempo propio para alcanzar el colapso se lleva a cabo de manera finita.

Las señales de luz emitidas por el objeto que cae hacia el observador externo presentan cada vez mas fuertes corrimientos al rojo a medida que se alcanza el radio de Schwarzschild. En efecto, el intervalo de tiempo propio con el cual se emiten señales está dado por ds/c = $d\tau = (1 - r_S/r)^{1/2}dt$. En termino de frecuencias nu observadas y emitidas, esto puede reescribirse como

$$v_{\text{obs}} = (1 - r_{\text{S}}/r)^{1/2} v_{em}.$$
 (52.4)

De acuerdo con la definición de corrimiento rojo gravitacional z_S dada en el capitulo anterior, se sigue que en este caso

$$z_{\rm q} = (1 - r_{\rm S}/r)^{-1/2} - 1.$$
 (52.5)

Así pues el cambio rojo gravitacional diverge a medida que la partícula de prueba se aproxima al radio de Schwarzschild. De esta manera, es imposible observar cualquier señal de luz que se emita dentro del radio de Schwarzschild. Las señales de luz pueden viajar hacia dentro para alcanzar r=0, pero aquellas dentro de $r_{\rm S}$ no pueden propagarse hacia fuera.

Queda entonces claro que objetos compactos cuyo radio es menor a r_S son negros para cualquier observador externo. De ahí que se denominen objetos negros. Debido a que cualquier partícula que cruce el radio r_S inevitablemente alcanza el punto r=0 se

denominan agujeros. En suma hemos probado que la métrica de Schwarzschild predice naturalmente la existencia de *agujeros negros* concebida inicialmente por John Mitchell en el siglo XVIII.

Cabe hacer notar que la aparente singularidad que aparece en la métrica de Schwarzschild en $r=r_{\rm S}$ es una singularidad removible pues se debe únicamente a la elección de coordenadas que se ha tomado. Sin embargo, la singularidad en r=0 es una singularidad real y no hay forma de removerla mediante un cambio de coordenadas. Esto fue demostrado por Roger Penrose de la Universidad de Cambridge en 1965 que de manera general muestra que todo objeto que se colapsa mas aya del radio de Schwarzschild debe generar una singularidad.

§53. Energía de amarre en órbitas circulares

La conservación de la energía para una partícula de prueba que se mueve en un espaciotiempo determinado por la métrica de Minkowski está dada por la ec.(50.7). En el caso de una órbita circular $\dot{r}=0$ y así

$$E_{tot} = \frac{1}{2}m\alpha(r\dot{\varphi})^2 - \frac{GMm}{r}.$$
 (53.1)

Esta relación es muy parecida a la que se obtiene en mecánica Newtoniana, excepto por el factor multiplicativo α en la energía cinética. En mecánica no-relativista sabemos que, para el caso de órbitas circulares amarradas al objeto central que produce el campo gravitacional, la energía cinética total de la partícula T es la mitad de la energía potencial |U|. Esta es el resultado del teorema virial

$$T = \frac{1}{2}|U|. {(53.2)}$$

Para entender su significado, imaginemos una partícula libre que se deja en el infinito. De esta manera la energía cinética de la misma es la energía potencial (piensa en la definición de la velocidad de escape). Si esta partícula de prueba va a ser amarrada a una trayectoria circular alrededor del objeto central gravitacional, entonces debe perder la mitad de su energía potencial de alguna manera (por ejemplo por enfriamiento radiativo). De lo contrario no puede amarrarse a una órbita circular. En la sección §37 vimos como esto se lleva a cabo en discos de acreción. Por esta razón la energía total en el caso de gravitación Newtoniana se denomina frecuentemente energía de amarre.

De la misma manera podemos identificar al lado derecho de la ec.(53.1) como la energía de amarre en el caso de gravitación relativista. Utilizando la ec.(51.2) para el caso en que $du/d\varphi = 0$ entonces

$$h^2 = \frac{GM}{1 - 3GM/c^2r}. (53.3)$$

Sustituyendo la ec.(53.3) en la ec.(53.1) se obtiene que

$$E_{\text{tot}} = -\frac{GMm}{2r} \left\{ \frac{1 - 2r_{S}/r}{1 - 3r_{S}/2r} \right\}, \tag{53.4}$$

que es la versión relativista del teorema del virial. Evidentemente cuando la velocidad de la luz tiende a infinito, se obtiene la versión Newtoniana del teorema del virial. Ahora bien, supongamos nuevamente que soltamos materia desde infinito hacia el centro del campo gravitacional. Es obvio que solamente una cantidad finita de energía se genera cuando se amarra a una partícula en una órbita circular.

Tarea 20

Mostrar que el máximo de la energía de amarre en la eq.(53.3) ocurre cuando $r=3r_{\rm S}$ (el radio de la última órbita estable) y que además la energía de amarre a este radio está dada por $E_{\rm tot}=-mc^2/18$

Este resultado es sumamente importante porque para alcanzar la última órbita estable es necesario que la partícula de prueba pierda 1/18 = 5.5% de su masa en reposo. En otras palabras es posible, mediante el amarre de una partícula a su última órbita, liberar 5.5% de su energía en reposo. Esto es mucho mayor a lo que se puede liberar por medio de reacciones nucleares. Por ejemplo, si se combinan cuatro núcleos de hidrógeno en un núcleo de hidrógeno se libera solamente 0.7% de la energía en reposo de la materia, un orden de magnitud menor al que se obtiene mediante el amarre de masas a la mínima órbita circular estable (cf. ec.(28.6)).

Este resultado es esencial para calcular de manera cualitativa las dimensiones de un objeto que emite radiación. Si observamos variaciones de emisión de intensidad (digamos

por un factor de dos) en una escala de tiempo τ entonces la causalidad implica que la región debe ser menor a $r=c\tau$. La última órbita estable nos dice esencialmente el valor mínimo que debe tener el objeto para emitir radiación. En las aplicaciones astrofísicas de agujeros negros hablaremos mas con respecto a estos análisis.

§54. Deflexión de la luz por objetos gravitacionales

Una consecuencia inmediata del principio de equivalencia es que los rayos de luz sufren deflexiones en la presencia de campos gravitacionales. Los rayos de luz se mueven a lo largo de geodésicas nulas ds = 0. Esto trae como consecuencia el hecho de que el momento angular específico h y la energía k definidos en las ec.(50.4) y la ec.(50.3) respectivamente divergan cuando ds tiende a cero. De esta manera, podemos encontrar la ecuación que describe la trayectoria de fotones en la métrica de Schwarzschild poniendo el valor $h^{-1} = 0$ en la ec.(51.2)

$$\frac{d^2u}{d\varphi^2} + u = \frac{3GM}{c^2}u^2. {(54.1)}$$

En el caso en que los fotones se propaguen en órbita circular alrededor de un agujero negro entonces el primer término de la ec.(54.1) es cero y así

$$r = \frac{3GM}{c^2} \tag{54.2}$$

Tarea 21

La solución de la ec.(54.1) puede hacerse de la siguiente manera para el caso en que u=1/r es una cantidad de primer orden. Consideremos primero la ecuación homogénea, es decir, la ecuación con el lado derecho igual a cero.

(1) Mostrar que una solución satisfactoria de esta ecuación es $u_0 = \sin \phi/R$, donde R es la distancia de máximo acercamiento al objeto central y ϕ es el ángulo azimutal.

Evidentemente esta solución corresponde a una trayectoria recta, lo cual se espera en el caso de la ausencia de un campo gravitacional cuando el término del lado derecho de la ec.(54.1) es cero.

(II) Para encontrar la solución de la ec.(54.1) al siguiente orden de aproximación considera $u = u_0 + u_1$ donde u_1 es una cantidad del primer orden. Muestra que la ec.(54.1) es entonces

$$\frac{d^2u_1}{d\omega^2} + u_1 = \frac{3GM}{c^2R^2}\sin^2\varphi.$$

(III) Encuentra que la solución de la ec.(54.1) es entonces

$$u = u_0 + u_1 = \frac{\sin \varphi}{R} + \frac{3GM}{2c^2R^2} \left(1 + \frac{1}{3}\cos 2\varphi \right)$$

(IV) Como $u=1/r\ll 1$ entonces se espera que $\phi\ll 1$. Muestra entonces que con esta aproximación el valor de $\phi=\phi_\infty$ está dado por $\phi_\infty=-2GM/Rc^2$.

Dada la simetría del problema la deflexión total de un rayo de luz al pasar cerca de un objeto gravitacional es dos veces el valor absoluto de φ_{∞} (una deflexión por la parte de atrás del objeto y otra por enfrente). De esta manera, la deflexión total $\Delta \varphi$ está dada por

$$\Delta \varphi = \frac{4GM}{Rc^2} \tag{54.3}$$

Para los rayos de luz que pasan rosando el limbo del sol el valor de $\Delta \phi = 1.75\,\mathrm{arcsec}$. Esta predicción llevo a Eddington y Crommelin de la Universidad de Cambridge en 1919 a verificar el resultado midiendo con precisión la deflexión angular de estrellas que se encuentran cerca del limbo solar en un eclipse. Dos expediciones, una en la costa Oeste de África y otra en el norte de Brasil mostraron que el resultado fue de $1.98\pm0.012\,\mathrm{arcsec}$ y la otra $1.61\pm0.3\,\mathrm{arcsec}$. Estas observaciones fueron complicadas de realizar y siempre hubo controversia sobre estos resultados. Fue hasta 1970 cuando radio-interferómetros en diversas partes del mundo mostraron la veracidad del resultado.

La consecuencia inmediata de estos resultados son los denominados lentes gravitacionales. Imagina que justo detrás de una galaxia distante un cuasar emite radiación. Lo
que se espera es observar una imagen circular (un anillo) alrededor de la galaxia deflectora.
Estos anillos de Einstein han sido observados en diversas ocasiones y un ejemplo de estas
observaciones se muestra en la fig. (VII.3). Evidentente, si el alineamiento no es perfecto de
cualquier manera se espera ver una amplificación de la imagen del objeto lejano.

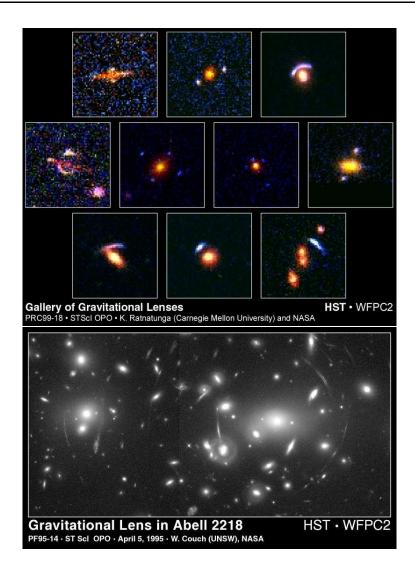


Figura VII.3: Diversos lentes gravitacionales en astrofísica.

§55. Experimentos en gravitación relativista

La gran mayoría de experimentos para verificar la validez de la relatividad general están basados en las propiedades de la métrica de Schwarzschild. Existen cuatro experimentos que por tradición verifican la teoría de la relatividad.

El primero es con respecto al cambio rojo gravitacional que presenta una onda elec-

tromagnética cuando se mueve a lo largo de un campo gravitacional. La manera de hacer este experimento de manera tradicional es con ayuda del efecto Mössbauer. Estos experimentos fueron hechos por Pound, Rebka y Snider en los 1960's y mostraron la validez del corrimiento al rojo de fotones subiendo y bajando en una torre de 22.5 m de altura de la Universidad de Harvard. Debido al efecto Mössbauer los efectos de amortiguamiento de los fotones rayos $-\gamma$ son cero ya que el momento es absorbido por toda la superficie atómica. Sin embargo, la resonancia de rayos $-\gamma$ es notable, de tal forma que son los efectos Doppler son los que causan la absorción de esta resonancia.

El segundo experimento, que fue el gran triunfo de la teoría general de la relatividad en su época fue la explicación de la preseción del perihelio de mercurio, discutido en la sección §51.

La tercer prueba consiste en la medición de la deflexión de los rayos de luz provenientes de estrellas lejanas que pasan junto al sol. Ya discutimos en la sección §54. Existe evidencia de este experimento mucho mas preciso que lo hecho por Eddington y Cromwell. Estos experimentos se llevan acabo mediante el uso de un arreglo de radiotelescopios en distintos países que forman el llamado "Very Long Baseline Interferometry" (VLBA). Con este arreglo de experimentos es posible monitorear con una precisión excelente (incluso menores a milisegundos de arco) la separación angular entre radio fuentes compactas cuando están cerca del sol.

La cuarta prueba tradicional resulta ser la mas importante de todas y es muy parecida al experimento que muestra la curvatura que presentan los rayos de luz al pasar cerca del sol. Básicamente lo que se observa es la dilación del tiempo que se presenta cuando una onda electromagnética se propaga a través de un campo gravitacional variable. En 1964 Irwin Shapiro se dio cuenta que los rayos de luz que pasaban cerca del sol causaban una dilación del tiempo que puede ser medida mediante cronometraje preciso de señales de radio enviadas desde la tierra y reflejadas por planetas o vehículos espaciales cuando estos mismos están a punto de ser ocultados por el sol. Debido al éxito de estos experimentos, sondas espaciales futuras llevaron consigo "repetidores". Los mas famosos fueron los llevados a Marte por las sondas Vikingo. Gracias a estas sondas, se obtuvieron resultados mas precisos.

Existen muchos mas experimentos que confirman mas y mas el genio de Einstein al crear su teoría relativista de la gravitación. Sin embargo el experimento mas grandioso y espectacular de todos es sin lugar a duda el que se obtiene al observar las ondas electro-

magnéticas en radio provenientes de pulsares.

Como vimos en el capitulo V, es posible mostrar que los pulsares son los relojes mas precisos sobre escalas de tiempo grandes que conocemos en el universo. La manera de mostrar es comparando las variaciones de tiempo de rotación de dos pulsares contra un reloj atómico en la tierra. Los pulsares son un regalo de la naturaleza para los astrofísicos ya que son relojes moviéndose en un campo gravitacional. Justo lo necesario para verificar la teoría general de la relatividad.

Existen varios sistemas binarios de pulsares. El primero en conocerse fue el sistema PSR 1913+16. Este sistema binario tiene un periodo de 7.75 hrs con una excentricidad notable de $\epsilon=0.617$. Con este regalo para los astrofísicos relativistas pueden hacerse diversas comparaciones entre las observaciones y las predicciones de la teoría relativista. Por ejemplo, es posible encontrar el valor del cociente de las dos masas de ambas estrellas. Sin embargo, la predicción mas fuerte de todas con respecto a este sistema binario tiene que ver con el decaimiento de la energía rotacional del sistema debido a la emisión de ondas qravitacionales[†]. La razón de cambio de la frecuencia angular del sistema con respecto al tiempo es proporcional a la quinta potencia de la frecuencia angular. El decaimiento de este sistema ha sido observado por casi tres décadas y está justamente dado por el valor antes mencionado. Un triunfo mas de la teoría relativista de la gravitación. Este resultado es muy importante e implica que cualquier otra teoría de la gravitación debe ser eliminada pues la teoría relativista de la gravitación predice una emisión cuadrupolar. De esta manera, cualquier teoría que implique radiación bipolar debe ser eliminada. Así pues, debemos estar consientes que la teoría general de la relatividad es sin duda la teoría que describe los fenómenos gravitacionales de manera confidente.

Otro experimento que puede hacerse con un sistema binario de pulsares es investigar la variación de la constante gravitacional G con respecto al tiempo cósmico. Resulta que puede mostrarse que si existe alguna variación temporal \dot{G}/G esta debe ser menor a 10^{-11} año $^{-1}$. Esto implica que si G ha tenido una variación a lo largo de significantes tiempos cosmológicos $\sim 10^{10}$ años. Esto significa que si G ha tenido una variación en el

[†]De la misma manera que en el caso de campos electromagnéticos, las masas al ser aceleradas producen radiación. Esta radiación es de forma cuadrupolar (a diferencia de la radiación bipolar para el caso de cargas electromagnéticas) y produce ondas gravitacionales (a diferencia de las ondas electromagnéticas para el caso de electromagnetismo). Estas ondas gravitacionales son deformaciones en la estructura del espacio—tiempo que se transmiten a la velocidad de la luz.

tiempo, entonces esta misma es significante para tiempos cosmológicos, i.e. del orden de $\sim 10^{10}$ años.

Hasta ahora hemos trabajado con agujeros negros que únicamente toman en consideración la masa M como una de sus propiedades. Sin embargo, la gran mayoría de los objetos en el universo tienen rotación: las estrellas, las galaxias, etc. De hecho, si un agujero negro fue producido gracias al colapso de una estrella uno espera que el momento angular de la estrella quede heredado al agujero negro mismo. Evidentemente estos agujeros negros con momento angular son los mas apropiados en el estudio de la astrofísica. Además de momento angular, un agujero negro puede tener también una carga eléctrica asociada al mismo y una carga magnética (si está última existe). De esta manera los agujeros negros en su forma mas general resultan ser descritos por cuatro parámetros, la masa, el momento angular y las cargas eléctrica y magnética. Por esta razón los agujeros negros resultan ser los objetos macroscópicos mas simples del universo. En este capítulo analizaremos brevemente las propiedades de los agujeros negros en general y veremos las manifestaciones mas importantes que tienen estos en el universo como *Núcleos Activos de Galaxias* (NAG).

§56. Agujeros negros en general

Fue en 1916 cuando una nueva solución con simetría radial a las ecuaciones de Einstein fue encontrada por Reissner-Nordstrom. Esta es la solución para el caso de una masa puntual M con carga Q. En 1962 el matemático Kerr encontró la solución mas general para un agujero negro con momento angular J. Se puede mostrar que los agujeros negros aislados deben poseer únicamente estos tres números para su descripción. Cualquier otra propiedad del sistema inicial que dio lugar al agujero negro es radiada hacia el exterior durante el proceso de formación del agujero. De esta manera, como se mencionó arriba, estos objetos resultan ser los objetos macroscópicos mas simples del universo. Este resultado se conoce como el teorema de no pelos para agujeros negros.

Los agujeros negros mas importantes para los astrofísicos son los agujeros de Kerr. Estos mismos están descritos por la *métrica de Kerr* que puede escribirse de la siguiente manera utilizando las coordenadas de Boyer-Lindquist

$$ds^{2} = \frac{(\Delta - \alpha^{2} \sin^{2} \theta)}{\Sigma} c^{2} dt^{2} - 2\alpha \sin^{2} \theta \frac{r^{2} + \alpha^{2} - \Delta}{\Sigma} dt d\phi - \frac{(r^{2} + \alpha^{2}) - \Delta \alpha^{2} \sin^{2} \theta}{\Sigma} \sin^{2} \theta d\phi^{2} - \frac{\Sigma}{\Delta} dr^{2} - \Sigma d\theta^{2},$$

$$(56.1)$$

en donde

$$\Sigma = r^2 + \alpha^2 \cos^2 \theta,\tag{56.2}$$

$$\Delta = r^2 + a^2 - 2GMr/c^2.$$
 (56.3)

Aquí hemos escrito a = J/Mc que representa el momento angular del agujero por unidad de masa por unidad de velocidad, es decir, tiene dimensiones de distancia. J es el momento angular del agujero y M su masa. Cuando el agujero no está en rotación, es decir, cuando a = 0, la métrica de Kerr converge a la métrica de Schwarzschild. Haciendo el cambio $\phi \to -\phi$ se llega a la misma ecuación si $a \to -a$. De tal manera que se puede escoger a no negativa sin perdida de generalidad.

La primer consecuencia evidente de la métrica de Kerr es que los coeficientes de la misma no dependen explícitamente de el tiempo t ni de la coordenada angular ϕ . De esta manera, la métrica resulta estacionaria y axisimétrica.

Tal y como sucede con la métrica de Schwarzschild, la métrica de Kerr tiene una singularidad en la componente radial cuando $\Delta=0$. Este radio corresponde a la superficie de corrimiento al rojo infinito u *horizonte* del agujero. El radio al que esto ocurre está dado por las soluciones $\Delta=0$. De esta manera, es útil escribir

$$\Delta = (r - r_{+})(r - r_{-}), \tag{56.4}$$

donde

$$r_{\pm} = (GM/c^2) \pm \sqrt{(GM/c^2)^2 - a^2}.$$
 (56.5)

Puede mostrarse que justamente la superficie formada por la ec. (56.5) para el signo positivo,

el *horizonte*, juega el mismo papel que lo que hace el radio de Schwarzschild para la métrica de Schwarzschild en el caso de agujeros sin rotación. Todo aquello que cae dentro de este horizonte no puede escapar del mismo.

La ec.(56.5) impone un límite sobre el momento angular máximo que un agujero negro puede tener. El valor de este momento angular máximo es claramente $J = GM^2/c$. Objetos con un momento angular mas grande que este valor no pueden colapsarse a formar un agujero negro. Este resultado es sumamente importante porque para un agujero negro con momento angular máximo –un agujero negro con máxima rotación– resulta que $r_+ = GM/c^2$, que es justamente la mitad de el radio de Schwarzschild.

Existe un efecto importante para los agujeros negros con rotación. Este efecto corresponde al arrastramiento de sistemas inerciales de referencia. Justamente la rotación del agujero hace que entre mas cerca se encuentre un objeto del agujero, el arrastre de los sistemas de referencia sea mas y mas pronunciado hasta que nada pueda resistir este arrastre en dirección a la dirección de rotación del agujero. En otras palabras, un giroscopio localizado lo suficientemente cerca al agujero debe precesar. Existe un límite sobre el cual el arrastre es tan severo que nada puede resistirlo de tal forma que ningún observador puede mantenerse en reposo con respecto a las estrellas lejanas. Esta superficie está mas lejos del horizonte y se denomina límite estático y está dado por

$$r_{\text{est}} = (GM/c^2) + \sqrt{(GM/c^2)^2 - \alpha^2 \cos^2 \theta}$$
 (56.6)

Puede también mostrarse que a pesar de que las regiones lejanas al agujero negro con rotación son como-tiempo, existen regiones fuera del horizonte que son como-espacio. La superficie que limita a esta región se denomina ergoesfera y la región entre el horizonte y esta última se denomina ergoregión. Resulta que la ergoesfera coincide con la superficie que da el límite estático. Lo importante de esto es que la ergoesfera coincide con el horizonte únicamente para valores de $\theta = 0$, π correspondientes a los polos del agujero (cf. fig.(VII.4)

La ergoregión es sumamente importante en astrofísica. Para ver esto, consideremos una partícula proveniente de infinito donde su energía $E = p^0c$ (cf. ec.(15.5)) que se mueve sobre una geodésica en el espacio-tiempo y penetra a la ergoregión. Ahí dentro, sufre un decaimiento en dos partículas. La primera de ellas entra al agujero negro a través del horizonte y la segunda de ellas escapa a infinito. La conservación de la energía nos dice la

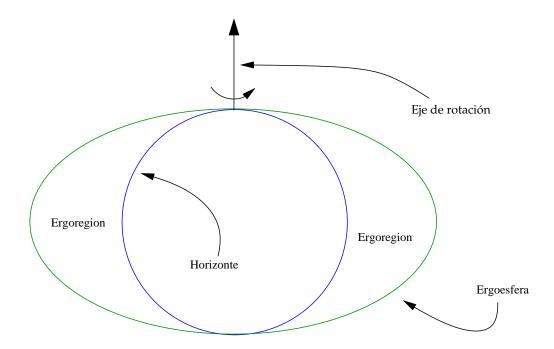


Figura VII.4: La figura muestra el horizonte de un agujero negro que rota alrededor del eje vertical. El horizonte está dado por la ec.(56.5) con signo positivo. La ergoesfera es aquella región que contiene eventos que pueden ser como—espacio. Ambas regiones coinciden en los polos del horizonte.

energía de la partícula que escapó a infinito está dada por $E_{\rm esc}=E-E_{\rm cae}$. Normalmente $E_{\rm cae}>0$ de tal manera que $E_{\rm esc}<E$. Sin embargo, dentro de la ergoesfera, como el espacio es como-espacio, entonces cave la posibilidad que $E_{\rm cae}<0$ de tal forma que $E_{\rm esc}>E$. Este es el famoso proceso de extracción de Penrose mediante el cual existe la posibilidad de extraer energía del único lugar disponible ¡el agujero negro!

Puede mostrarse que la fracción de la masa en reposo del agujero negro que puede hacerse disponible al universo externo mediante el proceso de Penrose está dada por $1-(1/\sqrt{2})\{1+[1-(J/J_{max})^2]^{1/2}\}^{1/4}$. Para un agujero negro de máxima rotación este valor resulta ser de $\sim 30\%$.

El hecho de que el horizonte esté mas pequeño en el caso de agujeros negros con rotación tiene consecuencias importantes. Por ejemplo, para el caso de agujeros con rotación máxima es posible que partículas puedan encontrarse en órbitas circulares mas cercanas al radio

dado para el caso de agujeros negros sin rotación, que es de 3rs. Resulta que para el caso de agujeros negros en rotación el resultado depende fuertemente de si la partícula órbita en dirección a la de giro del agujero negro (corrotación) o en dirección opuesta (contracorrotación). Los casos de más interés suceden para agujeros negros con rotación máxima. En este caso la última órbita circular estable se encuentra a $r=r_+=GM/c^2$ en el caso de corrotación y $r = 9r_+$ para partículas en contra-corrotación. De esta forma, las energías máximas de amarre pueden estimarse. Para el caso de corrotación estas energías están dadas por una fracción de $1-1/\sqrt{3}$ de la masa en reposo de la partícula en órbita circular y por $1-\sqrt{25/27}$ para las contra-corrotacionales. Así pues en el caso de contra-corrotación, es posible extraer un 43 % de la masa en reposo de el material que cae rotatóriamente hacia el agujero negro. Este es justamente el proceso mediante el cual se libera energía a través de la acreción de materia en agujeros negros y es muy probable que está misma sea la fuente de energía de varios de los objetos mas energéticos en el universo. Esta energía es mucho mas grande que la obtenida con la fusión nuclear que en el mejor de los casos alcanza a liberar un 1% de la masa en reposo. Además esta energía es 10 veces mas grande que la que se puede liberar en la acreción para agujeros negros sin rotación.

§57. Leyes de la termodinámica para agujeros negros

El horizonte de eventos es aquella región del espacio que divide el interior (el agujero negro propiamente) y el exterior de un agujero negro. Formalmente se dice que un agujero negro es el conjunto de eventos que impiden el escape a infinito de cualquier partícula o fotón. De esta manera el horizonte está formado por todas las posibles trayectorias de la luz que son apenas capaces de no caer en el agujero encontrándose estancadas de esta manera alrededor del mismo por siempre. Es claro que estos rayos de luz en el horizonte no pueden acercarse los unos a los otros, pues esto ocasionaría una eventual intersección de los mismos. Esto implicaría que eventualmente los rayos de luz serían tragados por el agujero negro, lo cual es una contradicción. Así pues, en el horizonte de eventos los rayos de luz únicamente pueden separase unos de otros o permanecer paralelos. En otras palabras, el área A de el agujero no puede disminuir $dA \geq 0$. Esta ley de incremento del área de un agujero negro fue formulada por Hawking de la Universidad de Cambridge en la década de los 1970's. La manera de incrementar esta área es cuando la materia y radiación caen al agujero o

bien por el amalgamiento de dos agujeros después de su colisión. El hecho de que el área de los agujeros negros nunca decrece es similar al hecho de que la entropía de un sistema en termodinámica nunca decrece: la segunda ley de la termodinámica. Recordemos que esta ley es solamente probabilística y es válida únicamente en la gran mayoría de casos. Por ejemplo, la probabilidad de encontrar todas las partículas de aire en tu recamara en una esquina de la misma a un determinado instante es casi cero, pero no cero. Sin embargo como es sumamente poco probable, consideramos este hecho como físicamente imposible. Un agujero negro podría quizás violar la segunda ley de la termodinámica ($dA \ge 0$) de una manera mas evidente. Al arrojar una caja con gas bastante desordenado (alta entropía) a un agujero la entropía de la materia fuera del agujero disminuye. Sin embargo si consideramos a la entropía como la entropía dentro y fuera del horizonte de eventos, evidentemente no hay contradicción. Pero no existe forma para ver dentro del agujero, así que observadores externos no podrían decir cuanta entropía hay dentro del agujero. ¿Cómo medir la entropía de un agujero negro entonces?

Bekenstein, un estudiante de la Universidad de Princeton dio la respuesta a tal pregunta en la década de los 1970's. Bekenstein mostró que midiendo el área de un agujero negro resultaba en una medida de su entropía. De esta manera, cuando la materia era succionada al agujero, la suma de la entropía externa con el área del horizonte de eventos nunca decrecería.

El hecho de que un agujero negro posea entropía significa que debe existir una temperatura relacionada con el mismo. Esta temperatura, la llamada temperatura de Hawking está dada por

$$T = \frac{\hbar c^3}{8\pi G M \kappa} \approx 10^{-7} \frac{M_{\odot}}{M} \, \text{K}, \tag{57.1}$$

donde h es la constante de Plank y k es la constante de Kelvin.

Este resultado es totalmente contradictorio a todo lo que uno puede esperar de un agujero negro. Dentro del horizonte de eventos de un agujero negro nada escapa, ni siquiera la radiación electromagnética. Este análisis excelente de Hawking mostró sin embargo que al considerar procesos de electrodinámica cuántica en el estudio de los agujeros negros, un espectro de radiación térmica dado por la ec.(57.1) debía ser observado.

La teoría cuántica explica de manera excelente como es posible llevar a cabo esta

emisión de radiación. Resulta que fotones virtuales son creados del vacío en el horizonte. Justamente antes de que estos mismos se aniquilen, uno de ellos es atraído hacia el agujero cuando el otro es capaz de escapar hacia infinito. De esta manera la aniquilación de estos fotones virtuales no puede llevarse acabo y así se produce un espectro térmico determinado por la ec.(57.1).

De manera mas general, no solamente son fotones los que son capaces de ser emitidos por el agujero. También partículas diversas pueden hacerlo. Basta con formar un par virtual en el cual, una partícula con energía negativa es devorada por el agujero negro. De esta manera su compañera con energía positiva es capaz de ser lanzada al exterior en forma de radiación.

De la ec.(57.1) se sigue que la evaporación de agujeros negros debida a la radiación de Hawking es bastante insignificante para agujeros con masas comparables a las del sol. Sin embargo, si agujeros negros de masa bastante baja fueron formados en el universo gracias al colapso de las pequeñas irregularidades del gas primordial, entonces todos los agujeros con masas menores a 10^{12} kg estarían evaporándose en la época presente. Sustituyendo este valor en la ec.(57.1) se sigue que T $\sim 10^{11}$ K, de tal manera que la emisión esperada debería ser un pulso de rayos $-\gamma$. Estos agujeros realmente no deberían ser llamados negros. Son blancos, calientes y emiten energías impresionantes. Hasta el presente no ha sido posible observar estos agujeros negros primordiales, pero la lucha no se ha dado por terminada.

Todos estos fenómenos de agujeros negros y otros más tienen sus aplicaciones mas importante en los objetos mas energéticos en el universo: los Núcleos Activos de Galaxias (NAG).

§58. Núcleos activos de galaxias

A principios del siglo XX las observaciones de la galaxia elíptica M87 (también conocida como NGC 4486, 3C 274 o Virgo A) hechas por Herber Curtis revelaron según sus palabras "un curioso jet rectilíneo... aparentemente conectado con el núcleo por una linea de material." Estas observaciones ópticas no fueron seguidas mas por Curtis y no fue sino hasta el desarrollo de la radioastronomía en la década de los 1960's cuando el tema de jets emanando del núcleo de ciertas galaxias se convirtió en un tema de mucho interés en la astrofísica.

Inmediatamente después de la segunda guerra mundial, científicos que estuvieron involucrados en el desarrollo de radares en la misma comenzaron a analizar la naturaleza de la radiación cósmica en frecuencias de radio. Hey y sus colegas en el Grupo de Operaciones de la Armada del Reino Unido descubrieron la primera fuente discreta de radio en la constelación de Cygnus. Esta fuente se llama hoy en día Cygnus A (fig.(VII.5)) y sigue siendo la radio galaxia mas brillante en el cielo.

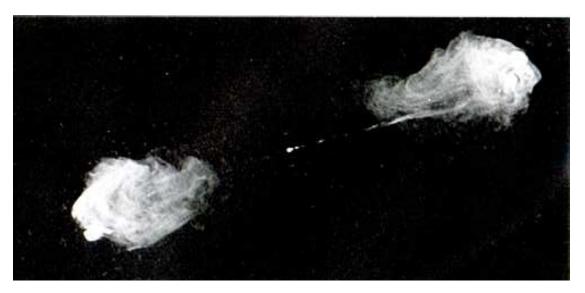


Figura VII.5: Imagen de alta resolución de la radio galaxia por excelencia, Cygnus A (3C 405) a 5 GHz. Dos jets simétricos de partículas calientes y de movimiento rápido son generados en las regiones centrales de la galaxia que lo contiene. Los jets se expanden e interaccionan con el medio intergaláctico formando los radio lóbulos que se extienden por decenas de kiloparsecs en las extremidades de la radio galaxia. Esta fuente se extiende alrededor de 150 kpc de un lado a otro. Cuando la galaxia es observada en frecuencias ópticas, su tamaño es menor a un décimo de la longitud observada en radio.

Para la década de los 1960's, los astrónomos comenzaron a convencerse que había señales de actividad peculiar en los centros de varias galaxias. Estas galaxias tenían concentraciones intensas de luz azul, bastante distinta de la radiación característica recibida de agregados de estrellas y gas, que son las fuentes normales de radiación en una galaxia. El espectro de esta nueva fuente de radiación poseía exceso de radiación azul y ultravioleta para provenir incluso de las mas calientes y masivas estrellas. En algunos casos se encontró que incluso las fuentes de radiación eran tan brillantes como la galaxia misma y que variaban con

el tiempo. Las galaxias que contenían estas fuentes centrales fueron llamadas Núcleos Activos de Galaxias (NAG). Las observaciones hechas en radio frecuencias mostraron que algunas clases de estas radio galaxias contenían chorros o jets angostos de gas rápido. Muy probablemente todas las galaxias poseen una forma de actividad en su núcleo asociado con un aquiero negro supermasivo. Las luminosidades de estos núcleos pueden variar entre $10^{36}\,\mathrm{W}$ hasta $10^{40}\,\mathrm{W}$, es decir, en ocasiones hasta $2\times10^{13}\,\mathrm{L}_\odot$. Estas regiones centrales son tan brillantes que resultan capaces en ocasiones de opacar a la luz de las $\sim 10^{11}$ estrellas en la entera galaxia. La radiación proveniente de estos núcleos no proviene de estrellas normales y en ocasiones varía en escalas de tiempo menores a días. De esta manera es posible poner una cota superior al tamaño de la región nuclear que produce la radiación. En efecto, a menos que movimientos relativistas sean involucrados, un objeto no puede variar en una escala de tiempo menor que el tiempo que tarda la luz en cruzar el sistema. De esta manera, si la intensidad de un objeto varía por un factor considerable (digamos de 2) en una escala de tiempo menor a Δt , este mismo debe ser menor a c Δt . Así se puede encontrar el tamaño de esta maquinaria central. Cabe hacer notar que la emisión en óptico e infrarrojo no proviene toda de la maquinaria central. Muy probablemente esta ha sido absorbida primeramente por nubes de gas y polvo y reemitida por estas mismas.

La manera de clasificar los NAGs es un tema excesivamente confuso y confundible. Esto es primeramente por las limitaciones observacionales que se presentan. Por ejemplo, no es posible cubrir todo el espectro para todos los objetos, lo cual implica que sea difícil reconciliar una clasificación hecha en las propiedades de la emisión en rayos-X y otro en las propiedades ópticas de distintos muestreos. Históricamente existen otros problemas. Por ejemplo, la frase cuasar que proviene de la palabra casi-estelar es un ejemplo de la manera de confundir totalmente a estos objetos. De cualquier manera, la mejor manera de intentar hacer una clasificación y unificación del gran mundo de los NAGs es un gran reto de la investigación moderna. Hoy en día esta investigación tiene como finalidad el inferir los procesos físicos que se llevan a cabo en diferentes NAG mediante la suposición de que estos mismos son simples, a pesar del carácter confuso de las observaciones.

Básicamente, los NAGs con luminosidad baja incluyen a las llamadas galaxias Seyfert y los mas energéticos se denominan cuasares. Estos cuasares son tan energéticos que pueden ser observados a distancias tan grandes que la luz proveniente de la galaxia progenitora no puede ser vista. Algunos de estos NAGs son fuentes brillantes en radio.

Los cuasares son importantes para la cosmología pues sirven como sondas para el universo a grandes corrimientos al rojo. Algunos de ellos están a corrimientos al rojo tan grandes que la línea Lyman- α de hidrógeno (a 121.6 nm) que normalmente se encuentra en el lejano UV se observa desplazada en el lejano rojo del espectro visible (a 700 nm aproximadamente).

Varios de los detalles de los NAGs son desafortunadamente poco entendidos. La mayoría de los modelos atribuyen la energía proveniente de los NAGs a la acreción de gas hacia un agujero negro de $\sim 10^8\,M_\odot$.

La razón de que sea un agujero negro y no otra cosa es debido a varias observaciones. En primer lugar, la rápida variabilidad de emisión en ocasiones hasta de 1 min en galaxias Seyfert de bajo poder. Esto implica que la distancia que puede recorrer la luz en este intervalo de tiempo sea tan pequeña como el radio de Schwarzschild para un agujero de 10⁷ M_☉. En segundo lugar, los NAGs son eficientes en convertir la masa en reposo en energía radiante. Para mostrar esto, lo que se hace es sumar el poder de todos los cuasares observados en la tierra y se calcula cual es la densidad de energía radiante asociada con la radiación emitida. Resulta que esta es $\sim 10^5\,h^{-3}\,M_{\odot}c^2$ por galaxia brillante. Aquí h es la constante de Hubble en unidades de 100 km s⁻¹ Mpc⁻¹. Todas las observaciones muestran que la gran mayoría de cuasares están identificados con galaxias brillantes. Ahora bien, estas masas nucleares muy probablemente han crecido desde la época de máxima actividad de cuasares. De esta manera, calculando la masa central en las galaxias cercanas, podemos poner un límite inferior a la eficiencia ϵ definida como el cociente entre la energía radiante de emisión entre la energía de la masa nuclear. El resultado que se obtiene de este análisis es $\epsilon \gtrsim 0.01 h^{-3}$. Despreciando todos los errores e incertidumbres hechas en estos cálculos, resulta incluso difícil imaginar como se puede llevar a cabo una conversión tan eficiente de masa en energía por procesos atómicos y nucleares. La única fuente de energía a la mano es la energía gravitacional. La rápida variabilidad de la emisión implica que un único objeto está presente en la producción de esta radiación. Resulta que los únicos objetos que pueden llevar a cabo estos procesos son agujeros negros supermasivos o estrellas supermasivas, sin embargo puede mostrarse que las estrellas supermasivas son inestables pues no pueden evadir inestabilidades dinámicas.

La formación de este agujero negro central implica que este mismo crecerá subsecuentemente mediante la acreción de gas o mediante la acreción de estrellas, planetas y demás material que lo rodee. Si esto es cierto, uno esperaría la formación de discos de acreción alrededor de estos agujeros, sobre todo porque para producir energía como lo hace un cuasar hay que tener una muy eficiente forma de convertir masa en energía. Cuando lineas espectrales son emitidas por la superficie de un disco de gas en rotación, una componente de las mismas estará cargada hacia el rojo y la otra hacia el azul debido al efecto Doppler. En otras palabras, se espera que las lineas de emisión de algunos elementos tengan un pico doble. Esto es justamente lo que se observa hoy en día con los observatorios de rayos-X en el espacio exterior (vease fig.(VII.6).

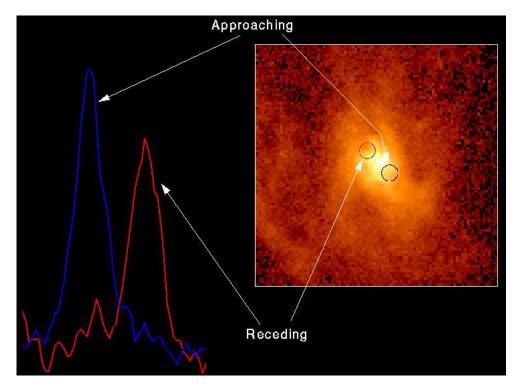


Figura VII.6: Líneas espectrales dobles producidas por el gas rotando sobre un disco de acreción alrededor de un agujero negro supermasivo en el centro de la galaxia M87. La línea se ve doble debida al efecto Doppler. Esta imagen fué tomada con el telescopio espacial Hubble.

Otra de las razones a favor de agujeros negros es que la gran mayoría de las radio fuentes brillantes con espectro plano, i.e. el flujo $F \propto I^{\nu}$ con $\nu \approx 0.6$, muestran expansiones superlumínicas (cf. capítulo II). Estas expansiones superlumínicas ocurren cuando

existe un fluido relativista y velocidades relativistas se esperan si existen fuertes campos gravitacionales, como los de un agujero negro.

Los radio ejes de los radio jets observados permanecen fijos por distancias inmensas, lo cual implica que estos mismos han permanecido fijos en dirección por tiempos mayores a 10 millones de años en varias fuentes. Un giroscopio compacto, como un agujero de Kerr es una manera natural de llevar a cabo este resultado.

Por si lo anterior fuera poco, resulta que los estudios espectroscópicos de la mayoría de los núcleos galácticos poseen débiles lineas de emisión anchas. Esto sugiere que la mayoría de las galaxias tienen fuertes potenciales gravitacionales.

§59. Discos de acreción alrededor de agujeros negros

En la sección §37 discutimos muy brevemente como funciona un disco- α de acreción. El mismo análisis no-relativista (que resulta ser muy parecido a la descripción relativista) puede extenderse para agujeros negros. El problema es que para el caso de agujeros negros no se tiene una superficie sólida (como la superficie de una estrella) en donde acabe el disco de acreción y por lo tanto necesitamos una condición de frontera adecuada que sustituya a la ec.(37.33). El final del disco de acreción corresponde a la última órbita estable que es $3r_{\rm S}$ para el caso de agueros negros de Shwarzschild. Supongamos que la última órbita estable se encuentra a la distancia $r_{\rm 1}$. La condición Newtoniana para que la materia caiga hacia el agujero es que

$$\frac{1}{2}\frac{\mathfrak{L}^2}{\mathrm{I}} \le \frac{1}{2}\mathrm{G}\frac{\mathrm{Mm}}{\mathrm{r_1}},\tag{59.1}$$

en donde $\mathfrak L$ es el momento angular de la partícula de prueba que orbita alrededor del agujero con masa M, e $I=mr_1^2$ es el momento de inercia alrededor del agujero en la última órbita estable. El lado izquierdo de la ec.(59.1) es la energía rotacional de la materia que es menor que la energía de amarre a la distancia r_1 -lado derecho de la ec.(59.1). En términos del momento angular específico (momento angular por unidad de masa) $J=\mathfrak L/m$ la ec.(59.1) es

$$J \le \sqrt{GMr_1}. (59.2)$$

En otras palabras, el momento angular con el cual la partícula de gas llega a la última órbita estable debe ser menor que la cantidad $\sqrt{GMr_1}$. Por comodidad, escribamos la taza de momento angular de la partícula en la posición r_1 como

$$\mathfrak{L} = \beta \dot{\mathfrak{m}} \sqrt{\mathsf{GMr}_1} \tag{59.3}$$

con $\beta \leq 1$. La ec.(59.3) es la condición que remplaza a la ec.(37.33). De aquí se sigue que la luminosidad L(r) producida por un anillo del disco Δr está dada por (cf. ec.(37.38))

$$L(r) = \frac{3G\dot{m}M_{\star}}{2r^2} \left\{ 1 - \beta \left(\frac{r_1}{r}\right)^{1/2} \right\} \Delta r.$$
 (59.4)

La luminosidad total del disco se obtiene integrando la ec.(59.4) desde r₁ hasta infinito

$$L = \frac{3G\dot{m}M_{\star}}{2} \int_{r_1}^{\infty} \left\{ 1 - \beta \left(\frac{r_1}{r} \right)^{1/2} \right\} \frac{dr}{r^2} = \left(\frac{3}{2} - \beta \right) \frac{G\dot{m}M}{2r_1} = \xi \dot{m}c^2, \tag{59.5}$$

en donde

$$\xi \equiv \frac{1}{2} \left(\frac{3}{2} - \beta \right) \frac{r_{\rm S}}{r_{\rm 1}}.$$

De la ec.(57.1) se ve que cuando $\beta=1$ entonces $\xi\approx0.8$ para discos de acreción alrededor de agujeros de Schwarzschild y $\xi\approx0.5$ para discos en corrotación con agujeros negros de Kerr.

§60. Leyes de escala en agujeros negros

Es curioso que existan agujeros negros de varios tamaños en la naturaleza. Sobre todo, aquellos de baja masa como las estrellas colapsadas y los de gran masa, como los agujeros negros supermasivos en los centros de varias galaxias. Existen leyes de escalamiento que nos permiten profundizar e incluso llegar a pensar que los agujeros negros de estos diversos tamaños son el mismo juguete físico, pero reescalado.

Como vimos en la sección §35, la luminosidad de Eddington L_{Edd} es la luminosidad crítica asociada con acreción esférica mediante la cual se ejerce una presión de radiación sobre un par electrón-protón. Esta radiación es capaz de balancear la fuerza atractiva de gravitación (cf. ec.(36.1)). Cualquier fenómeno que tenga una duración de unos cuantos

tiempos dinámicos (esto excluye a las supernovas por ejemplo) debe tener una luminosidad L tal que $L < L_{edd}$. Además la luminosidad de acreción está dada por la ec.(37.3) que para un disco de acreción alrededor de un agujero negro toma el valor de la ec.(59.5).

Si suponemos por ejemplo que la luminosidad $L \propto M$ entonces L/L_{Edd} tiene el mismo valor para cualquier agujero, independientemente de su masa. Esto implica que la importancia relativa de la gravedad y la presión de radiación es la misma para cualquier agujero.

El tiempo que tarda una partícula de prueba en dar una vuelta alrededor de la última órbita estable alrededor de un agujero es aproximadamente $10^{-4} (M/M_{\odot})$ seg. El valor exacto depende de si el agujero tiene o no rotación. Este valor de tiempo escala con M.

Si existe un disco de acreción alrededo de un agujeo negro, el área de su superficie es proporcional a M^2 . Así, la luminosidad por unidad de área escala como $\dot{M}M/M^2 \propto M^{-1}$. Debido a que la intensidad radiada por unidad de área va como T^4 , entonces el espectro característico de tipo cuerpo-negro varía como $M^{-1/4}$. De esta manera, para agujeros negros supermasivos la radiación emitida se encuentra en el UV, cuando para agujeros negros estelares, la emisión es en rayos-X.

§61. Jets extragalácticos

Las velocidades de las partículas que caen hacia un agujero negro por medio del proceso de acreción sobre un disco de acreción son $\gtrsim c/2$. Los campos magnéticos en estas regiones tan cercanas a los agujeros negros son lo suficientemente intensos ($\sim 1~\mathrm{T}$) como para acelerar a las partículas a velocidades ultrarelativistas. Estos campos magnéticos y las partículas que aceleran son los responsables de emisión en radio de los NAGs.

Una de las características mas importantes de los NAGs es que frecuentemente presentan radiación no-térmica (es decir, radiación no tipo cuerpo negro) producida por campos magnéticos y electrones que emiten radiación sincrotrónica. Esta energía y radiación se canaliza en chorros o jets provenientes del centro de la maquinaria central a velocidades ultrarelativistas (¡en algunos casos hasta de 0.999c!) por miles parsecs, pero en ocasiones llegan a medir unos cuantos millones de parsecs. Estos jets son tan distintos y peculiares en su exactitud que mas o menos es como si yo, desde mi oficina tuviese una manguera lanzando gas de manera tan precisa que pudiese dirigir este jet a lo largo de toda la atmósfera hasta Siberia. Estos objetos se denominan radio fuertes y constituyen mas o menos el

10 % de toda la población de NAGs.

Utilizando argumentos de energía mínima, que consisten en ver la energía existente en los lóbulos de las radio galaxias, puede calcularse la energía mínima que debe ser canalizada sobre los radio jets para producir la radiación observada. Resulta que estas energías mínimas son del orden de 10^{52} J. ¡Esto es inmenso! Corresponde a la energía en reposo de $\sim 10^5$ estrellas.

La manera mas sencilla de entender como se lleva a cabo el flujo de los jets (sobre todo su alto índice de colimación) es mediante leyes de conservación.

Tarea 22

Consideremos un jet cuyo flujo es no-relativista y su índice politrópico es de 5/3. Aproximemos al mismo como un flujo en una sola dimensión cuya sección transversal de área A varía a lo largo de su trayectoria. La taza de masa inyectada al jet por unidad de tiempo t, la descarga, es \dot{M} . Si la velocidad del jet tiene una velocidad v, entonces calculemos el poder L, es decir la cantidad de energía por unidad de volumen y la fuerza \dot{V} en el mismo.

(1) Utilizando las ecuaciones de conservación de masa, conservación de entropía y la ecuación de Euler vistas en el capítulo IV para flujo no-relativista, calcula el valor de ∂(ρv²/2 + ρε)/∂t. El término entre paréntesis es la energía total (cinética e interna) por unidad de volumen de una partícula de fluido, sin considerar efectos gravitacionales del mismo. Muestra que la razón de cambio de esta energía por unidad de tiempo puede escribirse de forma conservativa constituyendo la ecuación de conservación de la energía

$$\frac{\partial}{\partial t} \left\{ \frac{1}{2} \rho v^2 + \rho \epsilon \right\} = - \operatorname{div} \left\{ \rho v \left(\frac{1}{2} v^2 + \omega \right) \right\}. \tag{61.1}$$

Integrando esta ecuación sobre un volumen determinado y utilizando el teorema de la divergencia en el lado izquierdo y escribiendo $w = \epsilon + P/\rho$ es evidente el significado

[†]Como vimos en el capítulo V, un cambio politrópico en un gas ocurre cuando este mismo es hecho de manera cuasi-estática y su calor específico permanece constante mediante todo el proceso. De aquí se puede mostrar que $p \propto n^{\kappa}$ donde p es la presión del gas y n el número de partículas por unidad de volumen, κ es el índice politrópico y tiene el valor de 5/3 para un gas monoatómico y adiabático en el cual los efectos relativistas no son considerados. Para el caso de un gas ultrarelativista como un gas de fotones o un gas de electrones relativistas, el valor del índice politrópico es de 4/3.

de esta ecuación. El cambio de la energía por unidad de tiempo en el volumen tomado por la integración es igual al flujo de energía que pasa a través de las fronteras del mismo volumen.

(II) Utilizando el inciso anterior o de alguna otra manera, muestra que la derivada total d/dt de la energía por unidad de volumen $E = \rho v^2/2 + \rho \omega$, bajo la suposición de que $\partial p/\partial t = 0$, puede escribirse como

$$L \equiv \frac{\mathrm{d}E}{\mathrm{dt}} = \frac{1}{2} \frac{\mathrm{d}\rho}{\mathrm{dt}} v^2 \left\{ 1 + \frac{2}{M^2(\kappa - 1)} \right\}$$
 (61.2)

donde M=v/c es el número de Mach del material dentro del jet, $c\equiv\sqrt{(\partial P/\partial \rho)_s}$ es la velocidad del sonido en el jet, κ es el índice politrópico del gas en el jet y aquí se utilizó la famosa relación termodinámica $\omega=c^2/(\kappa-1)$. El significado de la ec.(61.2) es claro. El primer término del lado derecho de esta igualdad es la energía cinética transportada por el fluido del jet. El segundo término es la energía interna mas el trabajo "pV",

(III) De la ecuación de Euler y continuidad muestra que

$$\frac{\mathsf{d}(\rho v)}{\mathsf{d}t} = v \frac{\mathsf{d}\rho}{\mathsf{d}t} - \operatorname{grad} \mathsf{P}. \tag{61.3}$$

Con esto muestra que para un gas politrópico en una sola dimensión (la coordenada x) en el cual $\partial \rho / \partial t = 0$ se sigue que

$$F \equiv \frac{d}{dt}(\rho v) = v \frac{d\rho}{dt} \left\{ 1 - \frac{1}{\kappa M^2} \right\}, \tag{61.4}$$

donde v es la componente de la velocidad en la dirección x. El significado de esta ecuación es similar al de la ec.(61.3). El primer término es el flujo de momento y el segundo término está constituido por las fuerzas de presión térmica.

(IV) Si el jet es adiabático y estacionario ($\partial/\partial t = 0$), entonces utilizando la ecuación de Euler, muestra que la descarga $\dot{M} = d$ ($\int \rho dV$)/dt es tal que

$$\dot{M} = \rho v A = const, \tag{61.5}$$

donde A es la sección transversal del jet.

Ahora bien, supongamos que el gas del jet está en equilibrio de presiones con su medio ambiente, de tal manera que la presión p disminuye a lo largo del jet (la presión del gas en una galaxia disminuye a medida que la distancia al centro de la misma se incrementa). Suponiendo que el índice politrópico es $\kappa = 5/3$, es decir, el gas es monoatómico entonces $\rho \propto A^{-1}v^{-1} \propto p^{3/5}$.

- (VI) Muestra con esto que el número de Mach $M \propto p^{-4/5}A^{-1}$ y que $v \propto p^{-3/5}A^{-1}$
- (VII) Construye una gráfica que describa al área como función de la presión y muestra que pasa por un mínimo justamente en donde el gas dentro del jet se convierte en transónico (pasa de subsónico a supersónico). De esta manera, para que el jet se convierta en supersónico tiene que pasar por el cohete convergente—divergente de Laval. Este tipo de configuración es la que se tiene en las turbinas de los grandes cohetes que viajan al espacio.

Puede mostrarse que en la parte subsónica del flujo, la presión y la densidad son mas o menos constantes. En la parte supersónica la velocidad es mas o menos constante, de aquí que con lo mencionado arriba $A \propto v^{-3/5}$. Como sabemos, la densidad y la presión en la gran mayoría de las galaxias escala como $1/r^2$. De esta manera, el ángulo que subtiende el jet con el núcleo es $A^{1/2}r^{-1} \propto r^{-2/5}$.

Con esto hemos mostrado que para colimar un jet es necesario que su presión disminuya con la distancia, independientemente de la expansión que este mismo lleva en su sección transversal de área A.

Para hacer un tratamiento relativista en el flujo del jet, consideremos un plasma ultrarelativista de tal forma que su ecuación de estado esté dada por $p = e/3 \propto n^{4/3}$, es decir el índice politrópico es $\kappa = 4/3$.

Tarea 23

(I) Utilizando el hecho de que el vector de flujo de energía (energía por unidad de área por unidad de tiempo) es $cT^{0\alpha}$, donde c es la velocidad de la luz y T^{km} es el tensor

de energía-momento, muestra que la luminosidad L puede escribirse como

$$L = 4p\gamma^2 vA, \tag{61.6}$$

donde γ es el factor de Lorentz para la velocidad v.

(II) Utilizando las componentes espaciales del tensor de energía momento $T_{\alpha\beta}$ (el tensor de esfuerzos) muestra que la fuerza que produce el jet está dada por

$$F = T_{xx}A = \left\{4\gamma^2 v^2/c^2 + 1\right\} pA \tag{61.7}$$

(III) De manera similar a la que mostramos la ecuación de continuidad en el caso relativista, muestra que el número de partículas por unidad e tiempo n es conservado

$$\dot{n} = n\gamma vA = const'. \tag{61.8}$$

Esta relación es evidentemente una consecuencia directa de la ecuación de continuidad para el caso relativista.

(IV) Utilizando la ec.(61.6) y la ec.(61.8) muestra la sección transversal del jet cumple con

$$A \propto \gamma^2 / v, \tag{61.9}$$

y que el mínimo de esta área sucede para el punto transónico en el cual $v=c/\sqrt{3}$, que es el valor de la velocidad del sonido para flujos relativistas.

Esta es la manera mas sencilla de ver como funciona un jet relativista. Evidentemente hay muchas omisiones en este análisis. Por ejemplo, turbulencia dentro del mismo causada por el arrastre entre las paredes del jet y su medio ambiente debe ocurrir, ondas de choque internas al mismo son probablemente generadas. Además debe existir perdida de energía por radiación en el plasma. Sin embargo, quizás la mayor omisión a todo este análisis es el hecho de que estos jets son flujos hidromagnéticos. Es decir, los campos magnéticos amarrados al plasma del jet deben ser capaces de enfocar y colimar al jet.

Capítulo VIII

Cosmología

Una de las aplicaciones mas obvias de la teoría general de la relatividad es su utilización a todo el universo. Existen cuatro fuerzas en la naturaleza: fuerza fuerte, fuerza débil, fuerza eléctrica y fuerza gravitacional. De estas, la fuerza fuerte y débil son de corto alcance (su influencia es solo notable a distancias atómicas). Las fuerzas restantes tienen largo alcance, sin embargo al considerar el universo a larga escala resulta que el efecto neto de la fuerza eléctrica producido por cargas positivas y negativas tiende a cancelarse. Así pues, la única fuerza que juega un papel significativo en la dinámica y en la evolución del universo es la fuerza gravitacional.

§62. Observaciones cosmológicas

Al observar el universo desde nuestro planeta tierra, en una noche clara, lo primero que salta a la vista es el gran grado de inhomogeneidad que este posee. Existen estrellas esparcidas por todos lados de manera un tanto cuanto irregular. Al realizar observaciones con diversos instrumentos, se observa que las estrellas en el universo se encuentran dentro de sistemas en forma de "islas" llamados galaxias. De la misma manera, al analizar la distribución de estas galaxias en el universo se encuentra que localmente (en escalas cortas) la estructura fundamental del universo (las galaxias) están distribuidas inhomogéneamente. Sin embargo, esta distribución de galaxias se vuelve uniforme (homogénea) a medida que se consideran escalas cosmológicas.

Existen diversos mapeos del cielo que muestran la validez de las afirmaciones anteriores

utilizando decenas de miles de galaxias. Por ejemplo, el Lick Survey of Galaxies, el Cambridge APM Survey y Las Campanas redshift survey por mencionar los mas famosos la actualidad. De todos estos mapeos (cf. sección §4) se infiere que la distribución de galaxias es uniforme a gran escala y que tiene una inhomogeneidad notable en escalas menores a unos cuantos Mpc. De hecho existen largos espacios vacíos y paredes de galaxias alrededor de estos que muestran los mapeos. Con esto ha sido posible observar que la topología del universo es tal que la distribución de las galaxias en el universo se asemeja a la estructura de una esponja. Las galaxias (material de la esponja) se encuentra distribuido en la esponja de forma multiconexa. En otras palabras, todas las galaxias se encuentran interconectadas unas con otras, pero existen hoyos los cuales poseen multiconexiónes entre ellos. Este tipo de estructura topológica únicamente existe en tres dimensiones, pero no en dos. Es claro que si la estructura del universo es como esponja, necesariamente la distribución a larga escala del mismo debe ser uniforme. La escala en la que se tomó este mapeo corresponde a tamaños del orden de 100 veces el tamaño del espacio vacío mas grande.

Otra manera de darse cuenta de la homogeneidad a larga escala del universo fue hecha por Hubble. El flujo de radiación electromagnética (cantidad de energía por unidad de segundo por unidad de área) F está relacionado con la magnitud aparente mediante la ec.(6.2). De tal manera que si se realiza un mapeo de galaxias hasta una magnitud aparente máxima m, correspondiente a una densidad de flujo F, entonces una galaxia con luminosidad intrínseca F puede ser observada a una distancia F tal que la ec.(6.1) es válida. Ahora bien, si el número de galaxias por unidad de volumen que tienen una luminosidad F es valida entonces el número de galaxias observadas dentro de un ángulo solido F0 a una distancia F1 es

$$N(\geq F) = \Omega N_0 r^3 = \Omega N_0 \left(\frac{L}{4\pi F}\right) \propto F^{-3/2} \tag{62.1}$$

Sustituyendo la ec.(62.1) en la ec.(6.2) se obtiene que

$$N(\leq m) \propto 10^{0.6m} \tag{62.2}$$

Hubble fue el primero en darse cuenta de esta propiedad seguida por el número de galaxias por unidad de volumen. Diversas observaciones muestran que N sigue el valor indicado por la ec. (62.2) hasta una magnitud aparente $m \sim 22$.

Finalmente, una de las observaciones mas importantes para corroborar la isotropía y

homogeneidad del universo se obtiene mediante las observaciones de la radiación cósmica de fondo en micro-ondas, observada en detalle principalmente por el satélite COBE y el satélite WMAP (Wilkinson Microwave Anisotropy Probe). El espectro de esta radiación es un cuerpo negro perfecto radiando a una temperatura de 2.728 K. Las desviaciones de cuerpo negro son menores a 0.03 % de su intensidad máxima en el intervalo de longitud de onda entre 0.5–2.5 mm. La distribución de esta radiación es isotrópica hasta un nivel de una parte en 10⁵ en todas las escalas mayores a 10°. Por arriba de estos niveles en las fluctuaciones de la intensidad de la radiación cósmica de fondo se observan fluctuaciones reales en el cielo. Estas son cruciales para entender el origen de la formación de las estructuras primordiales en el universo: las galaxias.

De estas observaciones se sigue que la manera natural de comenzar con un entendimiento del universo a gran escala es mediante la construcción de modelos cosmológicos que sean isotrópicos y homogéneos.

§63. Ley de Hubble

La relación de Hubble mencionada anteriormente fue derivada en distancias de 2 Mpc alrededor de nuestra galaxia. Hoy en día se utiliza el método de la relación entre corrimiento al rojo y magnitud. Está relación consiste en que si todas las galaxias tienen la misma luminosidad L entonces esperamos que $S = L/4\pi r^2$ y que $m = -2.5 \log S + \text{const} = 5 \log r + \text{const}$. El corrimiento al rojo z se define como

$$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} \tag{63.1}$$

Utilizando los resultados de la relatividad especial para cambio de frecuencia de un SRI (nosotros) a otro SRI' (otra galaxia) que se mueve radialmente del primero con velocidad v se sigue que

$$1 + z = \left(\frac{1 + v/c}{1 - v/c}\right)^{1/2}.$$
 (63.2)

De esta manera, para corrimientos al rojo pequeños $v/c \ll 1$ se sigue que

$$v = cz, (63.3)$$

que es la famosa ley de Hubble.

Por otra parte, si el universo está en expansión uniforme al tiempo presente (¡hoy!), entonces la distancia entre dos puntos debe incrementarse por el mismo factor en un determinado intervalo de tiempo. En otras palabras,

$$\frac{r_1(t_2)}{r_1(t_1)} = \frac{r_2(t_2)}{r_2(t_1)} = \dots = \frac{r_n(t_2)}{r_n(t_1)} = \dots = \alpha = \text{const},$$
 (63.4)

en el intervalo de tiempo $\Delta t = t_2 - t_1$. De esta manera la recesión de velocidad de una galaxia con respecto al origen es

$$v_{n} = \frac{r_{n}(t_{2}) - r_{n}(t_{1})}{t_{2} - t_{1}} = \frac{(\alpha - 1)}{t_{2} - t_{1}} r_{n}(t_{1}) \equiv H_{0} r_{n}(t_{1}).$$
 (63.5)

De aquí que un universo en el cual la distribución de galaxias se mueve uniformemente satisface la relación

$$v = H_0 r, \tag{63.6}$$

que es la forma tradicional, de enunciar la ley de Hubble.

§64. Métrica de Robertson–Walker

La métrica de Robertson-Walker es la métrica de Minkowski de todos los posibles universos en expansión isotrópica. Debido a que la curvatura del espacio es una manifestación de la curvatura del espacio-tiempo, entonces la curvatura del espacio debe ser isotrópica. De esta manera la geometría del espacio debe ser tal como la curvatura de los espacios isotrópicos que consideramos con anterioridad.

Como vimos en el capítulo VI, la parte espacial de la métrica de los espacios isotrópicos curvos está dada por

$$\mathrm{d}l^2 = \mathrm{d}\rho^2 + R_c^2 \sin^2(\rho/R_c) \mathrm{d}\Omega^2, \tag{64.1}$$

en términos de las coordenadas "esféricas" (ρ , θ , φ). Si utilizamos coordenadas (x, θ , φ) entonces

$$dl^{2} = \frac{dx^{2}}{1 - \kappa x^{2}} + x^{2}d\Omega^{2}.$$
 (64.2)

El concepto mas importante en el estudio de la cosmología es el llamado principio cosmológico: "No vivimos en un lugar privilegiado del universo". De aquí se sigue que nuestra galaxia se encuentra localizada en un lugar típico del universo y que cualquier otro observador localizado en cualquier otra parte del universo a la misma época cósmica que la nuestra observa la misma estructura a larga escala que nosotros observamos. De esta manera, cualquier observador a la época cósmica presente observa la misma ley de Hubble de la expansión de las galaxias, la misma radiación cósmica de fondo, la forma de esponja que forman las galaxias, etc.

En las discusiones subsecuentes utilizaremos el concepto de observador fundamental. Debido a que el universo se expande alrededor de nosotros, introduzcamos un conjunto de observadores que se mueven de tal forma que el universo aparece isotrópico para cada uno de ellos. Así, cada observador fundamental se mueve con el flujo de Hubble. Definamos ahora el tiempo cósmico como el tiempo propio medido por un observador fundamental † . En otras palabras, el tiempo cósmico es el tiempo medido por un observador fundamental desde el origen t=0 en el cual se generó la gran explosión ‡

El problema de utilizar la métrica de la ec.(64.1) es que, dado que la velocidad de la luz es finita, al observar cualquier objeto astronómico (por ejemplo, galaxias) estamos viendo el pasado del mismo. En otras palabras, estos objetos están en el cono de luz del pasado centrado en nuestra galaxia en la época presente t₀. La fig.(VIII.1) muestra pictóricamente esta situación. La única forma en la que se puede entonces utilizar la métrica de la ec.(64.1) es utilizándola para una única época.

Para poder utilizar la métrica de la ec.(64.1) es necesario pensar entonces en ρ como una distancia ficticia escogida de la siguiente manera. Consideremos que tenemos un conjunto

[†]La *hipótesis de Weyl* dice que es posible sincronizar todos los relojes asumiendo que las lineas de universo de todos los observadores fundamentales se alejan unas de otras de un punto en común en el pasado.

[‡]En realidad no hay tal cosa como una explosión como veremos mas adelante. Una explosión es la inyección de energía en una región suficientemente pequeña del espacio. El problema es que la gente siempre piensa que de una explosión se sigue una expansión (con sobrada razón), pero a la inversa no funciona este argumento. En otras palabras, en lo subsecuente utilizaremos el termino gran explosión (por tradición), teniendo en cuenta que no hubo una explosión a t = 0 propiamente dicho.

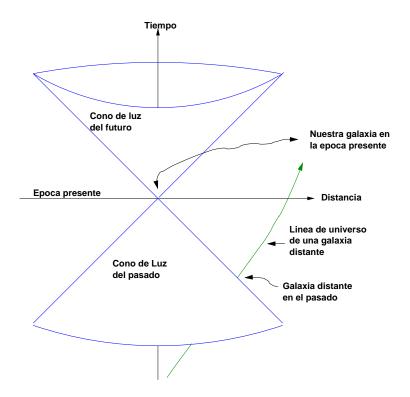


Figura VIII.1: Representación gráfica del cono de luz generado por nuestra galaxia (origen de coordenadas en la figura). Al observar una galaxia distante, gracias a que la velocidad de la luz es finita, únicamente nos llega información proveniente del pasado de esta galaxia. La distancia presente a la que se encuentra es desconocida hasta obtener un modelo de la dinámica del universo.

grande de observadores, los cuales forman una línea desde nuestra galaxia a otra galaxia. Cada uno de ellos posee una regla y es capaz de medir el intervalo de distancia propia $\Delta \rho$ entre el y su sucesor. Cada uno de estos observadores es instruido para medir el intervalo de distancia $\Delta \rho$ a un tiempo cósmico determinado. La suma de todos estos intervalos la denotamos como ρ . Esta es una distancia ficticia en el sentido de que no es posible medir ρ de esta manera. Las distancias a las galaxias lejanas se observan de tal manera como fueron vistas en el pasado y no existe forma de proyectar su posición en la época actual sin saber la dinámica del universo. De esta manera, la distancia ρ depende del modelo cosmológico que se elija, que hasta el momento en nuestra discusión es una incógnita.

Ya que el universo está en expansión uniforme, entonces entre el intervalo de tiempo

 $\Delta t = t_2 - t_1$, la distancia entre dos observadores fundamentales cumple con la relación

$$\frac{\rho_1(t_1)}{\rho_1(t_2)} = \frac{\rho_2(t_1)}{\rho_2(t_2)} = \dots = \text{const } \equiv \frac{R(t_1)}{R(t_2)},$$
 (64.3)

donde R(t) es el factor de escala. Este factor de escala describe la manera en la que varía la separación relativa entre dos observadores como función del tiempo cósmico. Es útil normalizar R(t) a una cierta época. Así pues, definamos $R(t_0)=1$ y pongamos $\rho(t_0)=r$. De esta manera,

$$\rho(t) = R(t)r. \tag{64.4}$$

La coordenada r se denomina frecuentemente como coordenada radial de comovimiento y es tal que funciona como una etiqueta amarrada a una galaxia para todo tiempo cósmico. La variación de la distancia propia entre dos galaxias en el universo que se expande es tomada en cuenta mediante el factor de escala R(t).

La isotropía del universo significa que las distancias ortogonales a la linea de visión deben expandirse de manera análoga a las radiales. En otras palabras,

$$\frac{R_c(t)\sin(\rho/R_c(t))d\theta}{R_c(t_0)\sin(r/R_c(t_0))d\theta} = \frac{R(t)}{R(t_0)} = R(t). \tag{64.5}$$

La solución a esta ecuación es

$$R_{c}(t) = \Re R(t), \tag{64.6}$$

donde $\mathfrak{R}\equiv R_c(t_0)$. De esta manera, para conservar la isotropía y la homogeneidad del universo, la curvatura κ tiene que variar como $\kappa\propto 1/R^2(t)$.

Sustituyendo la ec.(64.4) y la ec.(64.6) en la métrica de la ec.(64.1) en su forma general se obtiene la métrica de Robertson-Walker

$$\label{eq:ds2} ds^2 = c^2 dt^2 - R^2(t) \left\{ dr^2 + \Re^2 \sin^2(r/\Re) d\Omega^2 \right\}. \tag{64.7}$$

La métrica descrita por la ec.(64.7) puede escribirse de otra forma, utilizando la coordenada $x=R_c\sin(\rho/R_c)$

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left\{ \frac{dx^{2}}{1 - kx^{2}} + x^{2}d\Omega^{2} \right\},$$
 (64.8)

en donde $k=1/\Re^2$. Existe la posibilidad de reescalar la ec.(64.8) haciendo el cambio $kx^2\to x^2$ y también $k\to {\rm sign}\;(k)\equiv {\sf k}$

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left\{ \frac{dx^{2}}{1 - kx^{2}} + x^{2}d\Omega^{2} \right\},$$
 (64.9)

con k = +1, 0, -1 cuando la geometría del espacio es de tipo esférica (curvatura positiva), de curvatura plana (Euclídea o de curvatura cero), y de tipo hiperbólico (curvatura negativa) respectivamente.

La ec.(64.7) representa la métrica para describir al universo. Posee dos incógnitas, el factor de escala R(t) y la constante \Re . La manera de encontrar estas mismas es resolviendo las ecuaciones de Einstein. Evidentemente estas funciones contendrán información sobre la curvatura del espacio y la densidad del universo.

§65. Cosmología observacional

Antes de discutir las ecuaciones que describen la dinámica del universo, mediante la métrica de Robertson-Walker y las ecuaciones de Einstein, veamos las consecuencias que esta métrica impone sobre las observaciones del universo.

Primeramente consideremos un paquete de ondas electromagnéticas con frecuencia ν emitido entre los tiempos t y t + Δ t por una galaxia distante. En la tierra, un observador fundamental recibe este paquete de ondas en la época presente entre los intervalos t_0 y $t_0 + \Delta t_0$. Las ondas electromagnéticas se mueven a lo largo de geodésicas nulas, de tal manera que ds = 0 en la ec.(64.7). Suponiendo que la propagación del haz de luz se hizo de manera radial (i.e. $d\theta = 0$, $d\phi = 0$), la ec.(64.7) queda entonces como

$$-dr = \frac{cdt}{R(t)}. (65.1)$$

Supongamos que el frente del paquete de ondas fue emitido al tiempo t y recibido en la tierra al tiempo t_0 . De esta manera, para el frente del paquete, integrando la ec.(65.1) desde la fuente hasta el observador en la tierra se obtiene

$$c \int_{t}^{t_0} \frac{dt}{R(t)} = -\int_{r}^{0} dr.$$
 (65.2)

De la misma manera, la parte final del paquete que fue emitida al tiempo $t+\Delta t$ y llego a la tierra al tiempo $t_0+\Delta t_0 Deltat_0$ se integra desde la galaxia distante hasta nuestra coordenada en la tierra

$$c \int_{t+\Delta t}^{t_0+\Delta t_0} \frac{dt}{R(t)} = -\int_{r}^{0} dr.$$
 (65.3)

Combinando las ecs. (65.2)-(65.3) se obtiene que

$$0 = c \int_{\Delta t}^{\Delta t_0} \frac{dt}{R(t)} \approx c \frac{\Delta t_0}{R(t_0)} - c \frac{\Delta t}{R(t)}$$

y como $R(t_0) = 1$ esta relación implica la dilación del tiempo

$$\Delta t_0 = \frac{\Delta t}{R(t)}. (65.4)$$

Al observar a las galaxias distantes desde la tierra, R(t) < 1. De esta manera, cualquier fenómeno que ocurra en una galaxia distante, lo observamos con una duración de tiempo mayor aquí en la tierra.

Consideremos ahora que $\Delta t = 1/\nu$ es el periodo en el cual se emiten las ondas electromagnéticas de frecuencia ν , y que $\Delta t_0 = 1/\nu_0$ es el periodo de observación de las mismas. La ec.(65.4) implica entonces que $\nu_0 = \nu R(t)$, o bien utilizando el corrimiento al rojo z

$$z = \frac{v_{\rm em} - v_{\rm obs}}{v_{\rm obs}} = \frac{1}{R(t)} - 1$$

o bien,

$$1 + z = \frac{1}{R(t)} \tag{65.5}$$

La ley de Hubble de expansión del universo, ec.(63.6) en términos de distancias propias puede escribirse como

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathrm{H}_0 \rho,\tag{65.6}$$

de tal manera que sustituyendo la ec.(64.4) en esta relación se obtiene

$$H_0 = \dot{R}/R. \tag{65.7}$$

Ahora bien, la constante de Hubble H_0 es medida con respecto a la época presente t_0 , donde $R(t_0)=1$. De esta manera $H_0=\dot{R}|_{t_0}$. La ec.(65.7) nos permite definir una constante de Hubble H(t) que varia con el tiempo cósmico de la siguiente manera

$$H(t) = \frac{\dot{R}}{R} \Big|_{t}, \qquad H_0 = H(t_0) = \dot{R} \Big|_{t_0}.$$
 (65.8)

Como mencionamos anteriormente, la expansión del universo combinada con la isotropía del mismo implica que las distancias en las componentes azimutales y polares de la métrica cambien. Si d es la distancia propia en la dirección θ entonces

$$d = \Delta\theta R(t) (\Re \sin(r/\Re)) = \frac{D\Delta\theta}{1+z},$$

donde hemos introducido la medida de distancia $D \equiv \Re \sin(r/\Re)$. De aquí se sigue que

$$\Delta\theta = \frac{d(1+z)}{D}. (65.9)$$

Esta igualdad se reduce a la expresión Euclidiana $d = r\Delta\theta$ para corrimientos al rojo pequeños $z \ll 1$ y $r \ll \Re$. Frecuentemente, la ec.(65.9) se escribe como

$$\Delta \theta = \frac{\mathrm{d}}{\mathrm{D}_{\mathrm{A}}} \tag{65.10}$$

para que tenga una semejanza a su equivalente Euclidiano. La cantidad $D_A \equiv D/(1+z)$ se conoce como la distancia diametral angular.

La edad del universo hoy t_0 , es simplemente el tiempo que tarda un fotón desde la gran explosión ($r=r_{max}$, t=0) hasta la época presente $t=t_0$, r=0, en donde r_{max} es el valor de la coordenada en comovimiento correspondiente a un cambio rojo infinitamente

grande $z = \infty$ o bien R = 0

$$t_0 = \int_0^{t_0} dt = \frac{1}{c} \int_0^{r_{\text{max}}} R(t) dr$$
 (65.11)

§66. Ecuaciones de Friedmann

La métrica de Robertson-Walker, ec. (64.9) posee dos incógnitas, R(t) y \Re . Es necesario utilizar las ecuaciones de Einstein para encontrar una relación de la dinámica del universo que relacione a ambas.

La primera relación que se obtiene utilizando las ecuaciones de Einstein es una ley de conservación de energía

$$\dot{\rho} + 3\frac{\dot{R}}{R}\left(\rho + \frac{p}{c^2}\right) = 0. \tag{66.1}$$

Aquí hemos utilizado el hecho de que la energía interna propia por unidad de volumen de la materia o radiación e está relacionada con su densidad de masa en reposo propia ρ mediante $e = c^2 \rho$. Multiplicando la ec.(66.1) por R^3 se obtiene

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\rho R^{3}\right) + \frac{p}{c^{2}}\frac{\mathrm{d}R^{3}}{\mathrm{dt}} = 0. \tag{66.2}$$

Ahora bien, una unidad de volumen en comovimiento ($V=R^3$) tiene una energía interna U tal que $U=c^2\rho R^3$. De tal forma que la ec.(66.2) puede reescribirse como

$$dU + PdV = 0, (66.3)$$

De acuerdo con la primera ley de la termodinámica, el lado derecho de esta igualdad es TdS, donde T es la temperatura del universo y S su entropía. Así, la expansión del universo se lleva de manera adiabática.

Las siguientes relaciones que se obtienen con las ecuaciones de Einstein describen la cinemática del universo. La primera de ellas fue calculada por Raychadhuri y la segunda por Friedmann. Estas dos ecuaciones se denominan frecuentemente como las ecuaciones de Friedmann

$$\ddot{R} = -\frac{4}{3}\pi GR\left(\rho + \frac{3p}{c^2}\right),\tag{66.4}$$

$$\dot{R}^2 = \frac{8}{3}\pi G \rho R^2 - \frac{c^2}{\Re^2}.$$
 (66.5)

Con estas relaciones y una ecuación de estado adiabática[†] se encuentra el valor del factor de escala R como función del valor del radio de curvatura en la época presente \mathfrak{R} .

§67. Modelo estándard de Friedmann

El universo como lo percibimos ahora está dominado por estructuras masivas denominadas galaxias. Así pues, cualquier presión térmica que realicen estas masas, es despreciable en comparación con la densidad de energía en reposo de las masas (presión es energía interna por unidad de volumen). De esta manera, los cosmólogos definen a un conjunto de partículas no-colisionales (e.g. las galaxias) como polvo. Este polvo es tal que su presión p=0. Con esto, las ecuaciones de Friedmann y la ecuación de conservación de la energía, ec.(66.1), toman un aspecto sencillo. De hecho, la ecuación de energía en este caso implica que

$$\rho = \rho_0 R^{-3},\tag{67.1}$$

que es justamente la ec.(24.5) y representa la conservación de la masa.

La primera ecuación de Friedmann, ec.(66.4), combinada con la ec.(67.1) se transforma en

$$\dot{R}^2 = \frac{8}{3}\pi G \rho_0 R^{-1} - \frac{c^2}{\Re^2}.$$
 (67.2)

$$p = (\kappa - 1)e. \tag{66.6}$$

[†]La ecuación utilizada generalmente es la de un gas politrópico. En termodinámica relativista un gas politrópico obedece la relación $p \propto n^{\kappa}$ (cf. ec.(27.7)). Utilizando la primera ley de la termodinámica, ec.(22.7), se sigue que para cualquier gas politrópico, relativista (incluso para el caso de un gas ultrarelativista para el cual $p \sim e$) y no-relativista, la ecuación de estado está dada por

Esta igualdad es equivalente a la segunda ecuación de Friedmann, ec. (66.5), para este caso. Esta ecuación es justamente la ec.(24.10) si definimos $\kappa = 2c^2/\Re^2$. Las soluciones ya fueron calculadas en el capítulo IV, y como vimos ahí las soluciones con $\Re^2 < 0$ corresponden a universos abiertos (geometría hiperbólica) que se expanden por siempre. Cuando $\Re^2=0$ se obtienen universos abiertos (geometría Euclidiana o plana) que también se expanden por siempre. Las soluciones con $\Re^2 > 0$ corresponden a universos cerrados (geometría esférica) en los cuales ocurre un recolapso para un tiempo finito en el futuro.

Cabe hacer notar que el hecho de que el universo en expansión para modelos de polvo y el que consideramos en el capítulo IV tienen las mismas soluciones debido principalmente a tres causas. La primera es que la física que describe al comportamiento local de la materia, es la misma física que describe su comportamiento a larga escala. Por ejemplo, la curvatura del espacio en un milímetro cúbico del universo es igual a la curvatura de todo el universo. La segunda es que el cálculo Newtoniano es valido para todos los observadores que se mueven de tal forma que el universo parece isotrópico para ellos y esto ocurre para todos los observadores fundamentales, tal cual se escogieron en la métrica de Robertson-Walker. La tercera causa es que la validez de la métrica de Robertson-Walker es a lo largo de todo el universo, incluso en escalas mayores a la escala del horizonte r=ct. Esto no es de extrañarse, pues el principio cosmológico implica que la escala de validez de la física local ocurre también a nivel global.

Es útil definir la densidad crítica como la densidad límite ρ_c que debe tener el universo para mantenerse abierto. Más aya de este límite crítico, el universo es abierto. De la ec. (67.2) se sigue que

$$\rho_{\rm c} = \frac{3H_0^2}{8\pi G}.\tag{67.3}$$

De esta manera se define el parámetro de densidad Ω_0 de tal forma que

$$\Omega_0 = \frac{\rho_0}{\rho_c}$$

$$= \frac{8\pi G \rho_0}{3H_0^2}$$
(67.4)

$$=\frac{8\pi G \rho_0}{3H_0^2}$$
 (67.5)

Con esto, la ec.(66.5) toma la forma

$$\dot{R}^2 = \frac{\Omega_0 H_0^2}{R} - \frac{c^2}{\mathfrak{R}^2},\tag{67.6}$$

cuyas soluciones están dadas por

a) Modelo de Einstein-de Sitter con $\Omega_0 = 1$ (plano):

$$R = \left(\frac{3}{2}H_0t\right)^{2/3}.$$
 (67.7)

b) $\Omega_0 > 1$ (esférico):

$$R=a(1-\cos\theta), \qquad t=b(\theta-\sin\theta). \qquad \left(a\equiv\frac{\Omega_0}{2\left(\Omega_0-1\right)}, \qquad b\equiv\frac{\Omega_0}{2H_0(\Omega_0-1)^{3/2}}.\right) \tag{67.8}$$

c) $\Omega_0 < 1$ (hiperbólico):

$$R = \alpha (\cosh \varphi - 1), \qquad t = \beta (\sinh \varphi - \varphi). \qquad \left(\alpha \equiv \frac{\Omega_0}{2 \left(1 - \Omega_0\right)}, \qquad \beta \equiv \frac{\Omega_0}{2 H_0 (1 - \Omega_0)^{3/2}}.\right) \tag{67.9}$$

Como caso particular del segundo inciso está el modelo de vació con $\Omega_0=0$, también conocido como el modelo de Milne. Es interesante ver que en un modelo en el cual la densidad $\rho_0=0$ el universo se comporta de manera hiperbólica. Esto puede explicarse con el siguiente argumento. De acuerdo con la ec.(66.4), la desaceleración de cualquier galaxia es cero En otras palabras, la velocidad de expansión de cualquier galaxia con respecto al mismo observador fundamental es la misma. De esta manera, todos los observadores fundamentales están en sistemas de referencia inerciales. Así, el tiempo cósmico entre una y otra galaxia está dado por la transformación de Lorentz $t'=(t-vr/c^2)/\sqrt{(1-v^2/c^2)}$. Ahora bien, las condiciones de isotropía y homogeneidad deben ocurrir al mismo tiempo cósmico t' en los sistemas de referencias de los observadores fundamentales. En otras palabras, la hipersuperficie t'= const es normal a la linea de universo de cada observador

fundamental (galaxia). Por otra parte, el elemento de distancia dl en un punto dado P sobre la hipersuperficie t' = const es tal que $ds^2 = c^2 dt'^2 - dr^2 = -dl^2$. De esta manera $dl^2 = -c^2 dt'^2 + dr^2$ con t' el tiempo propio y l la distancia propia medidos ambos a partir del punto P. La coordenada t' corresponde justamente al tiempo cósmico t' y la coordenada l a la coordenada radial ρ que aparece en la ec.(64.1). De esta manera es claro entonces que el espacio-tiempo que describe al universo vacío no es de Minkowski pues la introducción del tiempo cósmico t' y la distancia propia l son las coordenadas necesarias para describir el comportamiento del mismo. Mediante el uso de estas coordenadas es posible llegar a la métrica de Robertson-Walker equivalente para un universo vacío.

En la época presente, cuando $t = t_0$ y R = 1, la ec.(67.6) implica que

$$\mathfrak{R} = \frac{c}{H_0(\Omega_0 - 1)^{1/2}}. (67.10)$$

Esto significa que la densidad del universo y su curvatura espacial están relacionadas una a una mediante esta relación. Esto no es de extrañarse pues "la masa le dice al espacio como curvarse..." De la ec.(67.10) se sigue entonces que el valor de la curvatura presente del universo puede conocerse sabiendo los valores de su densidad Ω_0 y la constante de Hubble H_0 para la época actual.

Es posible medir la deceleración del universo mediante la introducción de una aceleración adimensional q₀, llamada parámetro de desaceleración que se escribe como

$$q_0 \equiv -\left(\frac{\ddot{R}}{\dot{R}^2}\right)\bigg|_{t_0}.$$
 (67.11)

Esta definición es clara si se considera que q_0 representa la modificación a la ley de Hubble a segundo orden de aproximación

$$\frac{R(t)}{R(t_0)} = 1 + H_0(t - t_0) - \frac{1}{2}q_0H_0^2(t - t_0)^2 + \dots$$

Sustituyendo la ec.(67.10) en la ec.(67.11) se obtiene el valor de el parámetro de desaceleración para los modelos de polvo

$$q_0 = \frac{\Omega_0}{2}.\tag{67.12}$$

Mediante el uso de la ec.(65.5), la ec.(67.2) y la ec.(67.5) se sigue que

$$\frac{\mathrm{d}z}{\mathrm{d}t} = -H_0(1+z)^2(\Omega_0 z + 1)^{1/2}.$$
 (67.13)

De aquí que el tiempo cósmico t medido desde la gran explosión $z=\infty$ esté dado por

$$t = \int_0^t dt = -\frac{1}{H_0} \int_{\infty}^z \frac{dz}{(1+z)^2 (\Omega_0 z + 1)^{1/2}}.$$
 (67.14)

Utilizando esta relación es fácil ver que (¡demuestralo!)

$$t_0 = \begin{cases} \frac{\Omega_0}{H_0(\Omega_0 - 1)^{3/2}} \left\{ arcsin\left(\frac{\Omega_0 - 1}{\Omega_0}\right)^{1/2} - \frac{(\Omega_0 - 1)^{1/2}}{\Omega_0} \right\}, & \text{si } \Omega_0 > 1. \\ \frac{2}{3H_0}, & \text{si } \Omega_0 = 1. \\ \frac{\Omega_0}{H_0(1 - \Omega_0)^{3/2}} \left\{ \frac{(1 - \Omega_0)^{1/2}}{\Omega_0} - asinh\left(\frac{1 - \Omega_0}{\Omega_0}\right)^{1/2} \right\}, & \text{si } \Omega_0 < 1. \end{cases}$$
 (67.15)

De aquí (o de la ec.(67.15) se sigue que la edad del universo $t_0 \sim H_0^{-1}$.

Es natural generalizar Ω_0 y H_0 a cantidades que dependan de cualquier tiempo cósmico

$$H(t) \equiv \dot{R}(t)/R(t), \qquad \Omega = 8\pi G \rho/3 H^2(t), \tag{67.16} \label{eq:fitting_eq}$$

en donde H(t) y $\Omega(t)$ representan a la constante de Hubble y a la densidad del universo evaluadas a un tiempo cósmico t respectivamente.

Así, utilizando la ec.(65.5) y la ec.(67.1) se obtiene que

$$\Omega H^2 = \frac{8\pi G}{3} \rho_0 (1+z)^3.$$
 (67.17)

De esta última relación y utilizando la ec.(67.6), junto con la ec.(67.10) se obtiene una de las relaciones mas importantes en cosmología

$$\left\{1 - \frac{1}{\Omega}\right\} = \frac{1}{1+z} \left\{1 - \frac{1}{\Omega_0}\right\}. \tag{67.18}$$

La ec.(67.18) muestra que, independientemente del valor que Ω_0 tenga en la época presente, en el pasado distante del universo de polvo, cuando $z \to \infty$, el parámetro de densidad $\Omega \to 1$. De hecho, si el parámetro de densidad fuese ligeramente distinto de uno en el pasado distante, este mismo sería notablemente distinto de la unidad en la época

presente[†].

El hecho de que la curvatura del universo sea cercana a cero en la época presente se conoce como el problema de aplanado del universo. Es impresionante remarcar este hecho: "El universo debió haber sido puesto en un estado con bastante precisión de tal manera que en el pasado distante $\Omega=1$. Esto se manifiesta en un universo Euclídeo en nuestra época presente".

§68. Modelos de polvo con $\Lambda \neq 0$

Antes de analizar la historia térmica del universo, es importante discutir la dinámica de un universo de polvo cuando la constante cosmológica Λ es tomada en consideración en las ecuaciones de Einstein

$$R_{ik} - \frac{1}{2}Rg_{ik} = \frac{8\pi G}{c^4}T_{ik} + \Lambda g_{ik}.$$
 (68.1)

Históricamente, la constante cosmológica fue introducida por Einstein porque existe la posibilidad de tener soluciones estacionarias del universo si $\Lambda \neq 0$. El introducir esta constante en las ecuaciones de Einstein ha sido algo que cambia con la época según los avances (o retrocesos) en la cosmología. Las últimas observaciones hechas con supernovas indican que la constante cosmológica es diferente de cero. Además cuando el universo pasa por una época inflacionaria (cf. sección §72) necesariamente se obtiene que, en esta época de aceleración exponencial, la constante cosmológica en esa época es distinta de cero.

Evidentemente, la existencia de la constante cosmológica puede verse como una "fuerza" antigravitacional que aparece de alguna manera en las ecuaciones de Einstein. De hecho, estos cambios hechos en las ecuaciones de Einstein tienen un significado físico enorme. Esto ya que la introducción de una constante en el Lagrangiano que describe al espacio-tiempo significa que el mismo espacio-tiempo adquiere una curvatura que no puede ser eliminada de ninguna manera y que no está asociada con materia u ondas gravitacionales. De hecho, como veremos en un momento esta misma es atribuida en diversas formas al espacio vacío y las fluctuaciones cuánticas que en el mismo ocurren gracias al principio de incertidumbre

[†]Las observaciones muestran que el valor de el parámetro de densidad del universo en la época presente se encuentra a lo mas con un factor de diez de este número, lo cual implica que el universo debe ser cercano a un universo plano

de Heisemberg de la mecánica cuántica.

Para comenzar, notemos que las ecuaciones de Friedmann con constante cosmológica no-nula toman la forma

$$\ddot{R} = -\frac{4}{3}\pi GR\left(\rho + \frac{3p}{c^2}\right) + \frac{1}{3}\Lambda R,$$
(68.2)

$$\dot{R}^2 = \frac{8}{3}\pi G \rho R^2 - \frac{c^2}{\mathfrak{R}^2} + \frac{1}{3}\Lambda R^2.$$
 (68.3)

Incluso cuando p=0 y $\rho=0$, es decir, en el caso de ausencia de masa y energía en el universo, existe la posibilidad de tener una fuerza neta que actúa sobre cada partícula de prueba en el universo ($\ddot{R}=\Lambda R/3$). Esta propiedad del espacio vacío es de carácter cuántico y no existe forma de analizarle con mecánica clásica.

La mejor manera de entender un poco como la propiedad del vacío puede producir una constante cosmológica es la siguiente. Consideremos que el vacío posee una una densidad de energía ρ_v y que tiene una presión p_v . Si un pedazo V de vacío es expandido por una cantidad δV mediante un proceso adiabático, entonces mediante la primera ley de la termodinámica, la energía interna por unidad de masa $\delta \epsilon = -p\delta V$. Por otra parte, al expandir el volumen se gasta una energía $\delta \epsilon = \rho_v c^2 \delta V$. De aquí se sigue que

$$p = -\rho_{\mathbf{v}}c^2. \tag{68.4}$$

Es decir, el trabajo $p\delta V$ hecho en la expansión es negativo y por lo tanto la presión es negativa[†] Resulta además que durante la expansión la densidad de masa ρ_v del campo de energía negativo permanece constante. El valor no-positivo en la presión puede ser interpretado como una constante cosmológica. Para ver esto, escribamos las ecuaciones de Friedmann en su forma convencional, i.e. ecs.(66.4)-eq.8.35, de la siguiente manera. En la

[†]Termodinámicamente hablando, no hay ningún problema con la existencia de una presión negativa debido a la existencia de estados metaestables de la materia. Las ecuaciones de la mecánica estadística no imponen un valor absoluto en la presión. El ejemplo tradicional para producir una presión negativa en hidrodinámica consiste en mover un un pistón a lo largo de un embase con gas. Si el pistón se mueve suficientemente rápido sobre el gas, entonces se genera un onda de choque que atraviesa el gas incrementando la presión del mismo, así como su temperatura y densidad. Por el contrario si el pistón se mueve lo suficientemente rápido en dirección opuesta al gas, entonces posible generar una presión negativa en el gas del lado opuesto.

ec.(66.4) incluyamos no solamente la densidad de masa ρ_m , sino también la densidad del vacío ρ_v y la presión del vacío ρ_v (la presión de la materia es cero pues es polvo) para obtener

$$\ddot{R} = -\frac{4}{3}\pi GR \left(\rho_{\mathbf{m}} + \rho_{\mathbf{v}} + \frac{3p_{\mathbf{v}}}{c^2}\right). \tag{68.5}$$

Ahora bien, utilizando la ec.(67.1) en la ec.(68.5) se obtiene que

$$\ddot{R} = -\frac{4\pi G \rho_0}{3R^2} + \frac{8}{3}\pi G \rho_v R. \tag{68.6}$$

La ec.(68.6) es equivalente a la ec.(68.2) para modelos de polvo si se identifica a la constante cosmológica con el valor

$$\Lambda = 8\pi G \rho_{v}. \tag{68.7}$$

De aquí se ve que la densidad del vacío es capaz de generar una constante cosmológica, o bien, jel vacío genera una antigravedad!

Definamos el parámetro de densidad Ω_{Λ} asociado con la constante cosmológica Λ como

$$\Omega_{\Lambda} = \frac{8\pi G \rho_{\nu}}{3H_0^2} = \frac{\Lambda}{3H_0^2}.$$
 (68.8)

Con esto, las ecuaciones de Friedmann, ecs. (68.2)-(68.3) puedan reescribirse como

$$\ddot{R} = -\frac{\Omega_0 H_0^2}{2} \frac{1}{R^2} + \Omega_\Lambda H_0^2 R,$$
(68.9)

$$\dot{R}^2 = \frac{\Omega_0 H_0^2}{R} - \frac{c^2}{\Re^2} + \Omega_\Lambda H_0^2 R^2.$$
 (68.10)

La ec.(68.10) implica que en la época actual, cuando R=1 y $\dot{R}=H_0$, la curvatura del espacio está relacionada con los parámetros de densidad de masa presente y el del vacío por la siguiente relación

$$\frac{c^2}{\Re^2} = H_0^2 \{ (\Omega_0 + \Omega_\Lambda) - 1 \}. \tag{68.11}$$

De tal forma que si el espacio es Euclidiano (hoy y por tanto siempre) entonces $\Omega_0 + \Omega_{\Lambda} = 1$.

Los modelos con $\Lambda < 0$ y por tanto $\Omega_{\Lambda} < 0$ no son de mucho interés pues lo único que hacen es añadir una fuerza atractiva al ya existente campo de gravitación. Lo que si es evidente de la ec.(68.10) es que para este caso la expansión del universo es eventualmente revertida sin importar que tan pequeños sean los valores de Λ y Ω_{0} .

Los casos interesantes ocurren cuando la constante cosmológica $\Lambda>0$ y por tanto $\Omega_{\Lambda}>0$ pues causa repulsión o "antigravedad" entre dos partículas de prueba. Para todos estos modelos existe una mínima taza de cambio de expansión que ocurre para el mínimo valor del factor de escala. Este se encuentra diferenciando el valor de \dot{R} en la ec.(68.10) con respecto de el tiempo cósmico, lo cual implica la ec.(68.9). Igualando está ultima relación a cero se obtiene el valor de $R_{\rm min}$ para el cual \dot{R} es mínimo

$$R_{\min} = \left(\frac{\Omega_0}{2\Omega_{\Lambda}}\right)^{1/3} = \left(\frac{4\pi G \rho_0}{\Lambda}\right)^{1/3} \tag{68.12}$$

El valor de R²_{min} está dado por

$$\dot{R}_{\min}^2 = 3H_0^2 \left(\frac{\Omega_{\Lambda}\Omega_0^2}{4}\right)^{1/3} - \frac{c^2}{\Re^2} = \Lambda^{1/3} \left(\frac{3\Omega_0 H_0^2}{2}\right)^{2/3} - \frac{c^2}{\Re^2}.$$
 (68.13)

Cuando $\dot{R}_{\min}^2 > 0$ entonces R(t) crece por siempre y R(t) tiende al universo de de Sitter para valores suficientemente grandes

$$R(t) \propto exp \left\{ \Omega_{\Lambda}^{1/2} H_0 t \right\}, \qquad \mbox{para } t \to \infty \eqno(68.14)$$

En el caso en el que el lado derecho de la ec.(68.14) es negativo, entonces se dice que R(t) (o el universo) es Λ dominado y puede comportarse de dos maneras distintas. En la primera el universo es es tal que R(t) decrece hasta alcanzar un mínimo para mas tarde incrementarse y crecer indefinidamente hasta alcanzar asintóticamente el valor dado por la ec.(68.14). En el segundo caso el universo se expande rápidamente a tiempos pequeños, alcanza un máximo y como la fuerza de antigravedad no es suficientemente fuerte, un recolapso ocurre.

Los casos mas interesantes ocurren para $R_{\min} \approx 0$. Justamente el caso en el cual $R_{\min} = 0$ es conocido como el modelo de Eddington-Lemaître. Para este caso existe la posibilidad de (a) tener un universo que se expande desde el origen en un tiempo finito del pasado y eventualmente alcanzará un estado estacionario, (b) el universo se expande a partir de

un estado estacionario en el pasado infinito. En el modelo estático original de Einstein, el estado estacionario ocurre en la época presente. Los modelos de Eddington-Lemaître tienen edades mucho mayores de H_0^{-1} y en el caso del modelo extremo de Eddington-Lemaître en el cual $\dot{R}_{\rm min}=0$ en el pasado infinito la edad del universo es infinitamente grande.

§69. Historia térmica del universo

Uno de los problemas mas importantes para la cosmología astrofísica es sin lugar a dudas el entendimiento del origen y la evolución del contenido del universo mismo. Estos objetos astronómicos debieron ser "cocinados" en etapas tempranas al universo. Para poder analizar estas etapas, es necesario entender la dinámica de universos dominados por radiación y no materia (masa).

Consideremos un gas de fotones, de partículas masivas o un gas relativista en el límite ultrarelativista, es decir cuando $e \gg mnc^2$. La ecuación de estado de este gas está dada por

$$p = e/3, \tag{69.1}$$

es decir, corresponde a un índice politrópico $\kappa = 4/3$ (cf. ec.(66.6)). La energía interna por unidad de volumen propio e que contribuye cada fotón a la densidad de radiación está dada por $e = h\nu n$, donde h es la constante de Plank, ν su frecuencia y n el número de partículas (fotones) por unidad de volumen propio. Debido a que $n = n_0 R^{-3} = n_0 (1+z)^3$ y como $\nu = \nu_0 (1+z)$, de acuerdo con la ec.(64.4) y la ec.(65.5) respectivamente, se sigue que

$$e = e_0(1+z)^4 = e_0R^{-4}$$
. (69.2)

Analicemos ahora como varía el espectro de un cuerpo negro. Para comenzar, la ley de Stefan-Boltzman, $e=aT^4$ -cf. ec.(28.15), implica que[†]

[†]El hecho de que la temperatura T sea proporcional al factor de escala R(t) es claro si se considera al universo como un gas ideal (politrópico) de índice $\kappa = 5/3$. Para esto es suficiente notar que $T \propto PV = V^{-\kappa+1} = V^{-1/3} \propto R^{-1}$.

$$T = T_0(1+z) = T_0/R.$$
 (69.3)

La densidad de energía espectral de un cuerpo negro está dada por la distribución de Plank

$$e(\nu)d\nu = \frac{8\pi h \nu^{3}}{c^{3}} \frac{d\nu}{\exp(h\nu/kT) - 1},$$

$$= \frac{8\pi h \nu_{0}^{3}}{c^{3}} \frac{d\nu_{0}}{\exp(h\nu_{0}/kT_{0}), -1} \left(1 + z^{4}\right)$$

$$= (1 + z)^{4} e(\nu_{0})d\nu_{0}.$$
(69.4)

De esta manera, el espectro de un cuerpo negro mantiene su misma forma con la expansión del universo.

Tomando la constante cosmológica en las ecuaciones de Friedmann como cero y utilizando la ec.(69.1) se obtiene que

$$\ddot{R} = \frac{8\pi G e_0}{3c^2} \frac{1}{R^3},\tag{69.6}$$

$$\dot{R}^2 = \frac{8\pi G e_0}{3c^2} \frac{1}{R^2} - \frac{c^2}{\Re^2}.$$
 (69.7)

En épocas suficientemente tempranas del universo, entonces $\Re \gg 1$ y por lo tanto

$$R = \left(\frac{32\pi G e_0}{3c^2}\right)^{1/4} t^{1/2}, \quad \text{o bien} \quad e = e_0 R^{-4} = \left(\frac{32\pi G e_0}{3c^2}\right) t^{-2}$$
 (69.8)

La radiación cósmica de fondo en microondas es la mayor contribución a la densidad de energía de la radiación en el espacio intergaláctico. Así, comparando la densidad de masa en radiación con la densidad de masa en materia se obtiene

$$\frac{\rho_{\text{rad}}}{\rho_{\text{mat}}} = \frac{\alpha T^4}{\Omega_0 \rho_c (1+z)^3 c^2} = \frac{2.6 \times 10^{-5} (1+z)}{\Omega_0 h^2},$$
 (69.9)

en donde h es la constante de Hubble medida en unidades de 100 km/s/Mpc, es decir, $h \equiv H_0/(100 \, km/s/Mpc)$.

De esta manera, la contribución de la materia domina la evolución del universo para

corrimientos al rojo $z \le 4 \times 10^4 \Omega_0 h^2$. Cuando esta condición no se cumple el universo es dominado por la radiación.

Si los fotones en el universo no son creados ni destruidos por la expansión del universo, el cociente de fotones a bariones[†]

$$\frac{N_{\gamma}}{N_{B}} = \frac{3.6 \times 10^{7}}{\Omega_{0} h^{2}} \tag{69.10}$$

es un invariante cosmológico. Este cociente es una medida del factor mediante el cual los fotones ganan a los bariones en la época presente y puede mostrarse que es proporcional a la entropía específica del universo por barion en la época de expansión del universo dominada por radiación.

Existen ciertas épocas importantes a lo largo de la historia térmica del universo. Estas pueden listarse de la siguiente manera

- † Época de recombinación . \rightarrow A corrimientos al rojo de $z\approx 1500$ la temperatura de la radiación cósmica de microondas (T $\sim 3(1+z)$ K) es T ≈ 4000 K. Justo a esta temperatura hay suficientes fotones con energías $h\nu \geq 13.6\,\mathrm{eV}$ para ionizar todo el hidrógeno neutro del medio intergaláctico. A primera vista se ve extraño que temperaturas tan bajas sean capaces de ionizar el hidrógeno neutro pues usualmente se necesitan temperaturas del orden de 150000 K para alcanzar el potencial de ionización del hidrógeno. Cálculos detallados muestran que el gas intergaláctico se encontraba 50 % ionizado a corrimiento al rojo $z\approx 1500$. Esta época se conoce como la época de recombinación ya que para tiempos menores, el plasma pregaláctico se encontraba totalmente ionizado y para tiempos mayores este mismo se recombinó. Para épocas $z\sim 6000$ el helio estaba 50 % ionizado y rápidamente se ioniza totalmente para tiempos menores.
- $\hat{\tau}$ Barrera de fotones. \rightarrow Para corrimientos al rojo el universo se convierte opaco a la dispersión de Thomson y por tanto los fotones no pueden propagarse de sus fuentes hacia la tierra a través del plasma ionizado. Por esta razón el universo a corrimientos al rojo mayores a $z \approx 1000$ es inobservable: todos los fotones producidos a estas épocas son dispersados varias veces antes de que puedan propagarse hacia nosotros en la tierra.
 - 🕆 Época de igualdad de densidad de masa inercial radiativa y de materia. 👈

[†]Por bariones se entiende materia que está formada de protones y neutrones. Mas específicamente, materia formada fundamentalmente por tres quarks. Los neutrinos, por ejemplo, no son considerados materia barionica.

Cuando el corrimiento al rojo es $z=4\times 10^4\Omega_0h^2$ entonces la materia y la radiación hacen contribuciones iguales a la densidad de masa (cf. ec.(69.9)) y para corrimientos al rojo mayores que este valor el universo es dominado por radiación. para corrimientos al rojo mas grandes .

- \hat{T} Disociación de núcleos. \Rightarrow Para corrimientos al rojo del orden de $z\approx 3\times 10^8$, cuando la temperatura de radiación era del orden de $T\approx 10^9$ K los fotones de fondo tenían energía suficiente de rayos- γ (100 eV). A estas altas energías los fotones energéticos en la distribución de Plank son capaces de disociar los núcleos débiles como el del deuterio y helio. Evidentemente, a épocas más tempranas, todos los núcleos atómicos son rotos.
- \hat{T} Nucleosíntesis primordial. \rightarrow Una de las razones mas fuertes por las cuales la idea de un universo en expansión caliente debe ser tomada seriamente es porque es capaz de predecir la abundancia de los elementos ligeros en el universo mediante el proceso de nucleosíntesis primordial que ocurrió a corrimientos al rojo entre $z \sim 10^8-10^9$. La producción de elementos ligeros como el helio-3, helio-4, deuterio y litio-7 no pueden ser construidos en los interiores (hornos) de las estrellas ya que si estos mismos están mezclados en las partes internas de las estrellas, son rápidamente destruidos o convertidos en especies mas pesadas. Estos elementos ligeros son producidos en cuestión de minutos, cuando la producción de los demás elementos químicos que conocemos toman millones de años en realizarse dentro del núcleo de las estrellas.
- ϑ Barrera de neutrinos. \Rightarrow Cuando el corrimiento al rojo es ligeramente inferior a los $z \sim 10^9$ se produce una barrera de neutrinos de la misma forma que ocurre con los fotones para corrimientos al rojo de $z \approx 1000$.
- $\$ Producción de pares barion-antibarion. \rightarrow Cuando $z\approx 10^12$, la temperatura de fondo es tan alta que se produce un alto número de pares de bariones-antibariones. Un par es producido por cada par de fotones presentes en el universo actual. Estas condiciones llevan a uno de los más fascinantes problemas de la cosmología: la asimetría de bariones-

antibariones que consiste en los siguiente. El universo en la época presente tiene una obvia discontinuidad entre el número de bariones y antibariones (¡no hay antibariones en nuestro universo presente, lo cual es reconfortante y saludable!). Si esta asimetría no hubiese existido en el universo lejano, entonces el cociente entre fotones y bariones en la época actual sería del orden de 10° veces mas grande que lo que se observa y habría un número igual de materia y antimateria en el universo actual. Esta asimetría se lleva a cabo por la violación CP en física de partículas.

 $\hat{\tau}$ Época de Plank. \rightarrow Los modelos actuales de gran unificación de partículas han sido experimentalmente comprobados hasta energías del orden de 100 GeV, lo cual implica que probablemente podamos estar bastante seguros del comportamiento del universo hasta tiempos cósmicos t $\sim 10^{-6}\,\mathrm{s}$. La mayoría de los cosmólogos aceptan la visión del universo hasta tiempos t $\sim 10^{-3}\,\mathrm{s}$. Sin embargo es posible poner un límite físico a cualquier escala de tiempo, el tiempo de Plank $\mathrm{t_P} \sim \left(\mathrm{Gh/c^5}\right)^{1/2} \sim 10^{-43}\,\mathrm{s}$. A tiempos mas grandes que este, creemos que todas las leyes de la física, tal y como las conocemos hoy en día dejen de ser válidas.

§70. Origen de la estructura a larga escala

Las razones fundamentales por las cuales uno debe tomar en serio el modelo estándard del universo mencionado previamente son (a) la expansión del universo mediante la ley de Hubble, (b) la gran isotropía del universo a larga escala, (c) el espectro de cuerpo negro de la radiación cósmica de fondo en microondas, y (d) la abundancia de los elementos ligeros. De esta manera, la forma mas natural de comenzar a trabajar con la estructura del universo es mediante el uso del modelo estándard del universo.

A pesar de que hemos construido un modelo hermoso del funcionamiento del universo, este mismo es un tanto cuanto idealista pues en este universo no hay galaxias, ni estrellas, ni tierra, ¡ni humanos! La mejor manera de elucidar el problema es que el modelo estándard del universo es simplemente una aproximación a primer orden de la realidad. Las galaxias y los sistemas mas complejos fueron formados de manera complicada. La manera mas simple de explicar el origen de la estructura del universo a larga escala se logra cuando el contraste de densidad $\delta\rho/\rho$ alcanza una amplitud de 1 a partir de las condiciones iniciales que eran homogéneas e isotrópicas. Cuando el contraste de densidad alcanza el valor unitario,

evoluciona de manera no-lineal y rápidamente se forman estructuras amarradas mediante las cuales la formación de estrellas y demás procesos astrofísicos se llevan acabo. El detalle mas preciso de como se forma la estructura y que tipo tiene requiere de computo bastante fuerte. Uno de los grandes líderes de la actualidad es el Mexicano Carlos Frenk quien labora en la Universidad de Durham en el Reino Unido.

Las galaxias en el universo debieron haberse formado comparativamente tarde. Esto se ve al analizar los contrastes de densidades promedios de objetos en la época presente. Resulta que este mismo es del orden de $\delta\rho/\rho \sim 10^6$ para galaxias, 1000 para cúmulos de galaxias y unos cuantos para supercúmulos de galaxias. Utilizando la ec. (67.1) esto significa que las galaxias no pudieron haber sido separadas de objetos gravitacionalmente amarrados antes de corrimientos al rojo de $z \sim 100$. En el caso de cúmulos y supercúmulos el corrimiento al rojo es del orden de 10 y 1 respectivamente.

Para analizar como las pequeñas perturbaciones producidas por la gravedad en un universo en expansión evolucionan consideremos las ecuaciones básicas de la hidrodinámica no-relativista en su formulación Euleriana: la ecuación de continuidad (ec.(23.2)), la de Euler (ec.(24.6)) y la de Poisson

$$\nabla^2 \phi = 4\pi G \rho. \tag{70.1}$$

Estas ecuaciones se pueden escribir en términos de coordenadas Lagrangianas (derivadas totales) para obtener

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \nabla \cdot \boldsymbol{v},\tag{70.2}$$

$$\frac{d\rho}{dt} = -\rho \nabla \cdot \boldsymbol{v}, \qquad (70.2)$$

$$\frac{d\boldsymbol{v}}{dt} = -\frac{1}{\rho} \nabla p - \nabla \phi \qquad (70.3)$$

$$\nabla^2 \phi = 4\pi G \rho \tag{70.4}$$

Estas coordenadas Lagrangianas son útiles en el análisis de un universo en expansión porque corresponden justamente a las coordenadas en comovimiento del universo. La solución a orden cero de las ecuaciones previas ocurre cuando v=0. Si las demás variables son constantes (el universo es uniforme) entonces se obtiene la solución trivial p = 0 y $\rho =$ Esto es un problema pues formalmente hablando, no existe una solución estática al

problema. Sin embargo, tomando en cuenta de que el universo está en expansión uniforme y por tanto las soluciones a cero orden de perturbación corresponden a valores distintos de cero de las cantidades v_0 , ρ_0 , p_0 , y ϕ_0 . En otras palabras, las soluciones a orden cero deben satisfacer el conjunto de ecuaciones ec.(70.2)-(70.4) para estos últimos valores mencionados. Perturbemos ahora las ecs.(70.2)-(70.4) a primer orden mediante la introducción de las siguientes cantidades

$$v = v_0 + \delta v$$
, $\rho = \rho_0 + \delta \rho$, $\rho = \rho_0 + \delta \rho$, $\rho = \rho_0 + \delta \rho$. (70.5)

Tarea 24

(1) Muestra que las ecs. (70.2)-(70.4) al perturbarlas con ayuda de la ec. (70.5) se transforman en

$$rac{\mathrm{d}\delta
ho}{\mathrm{d}t} +
ho_0
abla\cdot\delta v = 0, \ rac{\mathrm{d}\delta v}{\mathrm{d}t} = rac{\partial\delta v}{\partial t} + v_0\cdot
abla\delta v = -rac{1}{
ho_0}
abla\left(\delta
ho\right) - \nabla\left(\delta
ho\right), \
abla^2\left(\delta
ho\right) = 4\pi G \delta
ho.$$

La ec.(64.4) puede escribirse como un "radio-vector" de tal forma que $\rho = R(t)r$, así $d\rho/dt = v = \dot{R}r + R(t)dr/dt = H(t)\rho + R(t)dr/dt$. Cuando dr/dt = 0 entonces se obtiene la ley de Hubble. De esta manera, el término R(t)dr/dt puede verse como una pequeña modificación a la ley de Hubble, o bien, una perturbación a primer orden de esta ley. De esta manera, utilizando el hecho de que $v = v_0 + \delta v$, entonces podemos identificar

$$\delta v = R(t) \frac{dr}{dt}.$$
 (70.6)

(II) A partir de esta última relación y las ecuaciones calculadas en el inciso (i) muestra que la densidad $\delta \rho$ obedece (¡recuerda que d/dt y ∇ no conmutan!)

$$\frac{d^2\delta\rho}{dt^2} + 2\frac{\dot{R}}{R}\frac{d\delta\rho}{dt} = \nabla^2\delta\rho + \rho_0\nabla^2\delta\phi. \tag{70.7}$$

(III) Para flujos adiabáticos (como la expansión del universo) la presión y la densidad a primer orden están relacionados por la velocidad del sonido c mediante la siguiente relación: $\delta p = c^2 \delta p$ (recuerda que $c^2 \equiv (\partial p/\partial \rho)_s$) y utilizando la última relación del inciso (i) muestra que

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + 2 \frac{\dot{R}}{R} \frac{\mathrm{d}\Delta}{\mathrm{d}t} = \frac{c^2}{R^2} \left(\frac{\partial}{\partial r_{\alpha}} \frac{\partial}{\partial r_{\alpha}} \right) \Delta + 4\pi G \Delta \rho. \tag{70.8}$$

(IV) Busca soluciones para la ec.(70.8) de la forma $\Delta \propto \exp{i(k_c \cdot r - \omega t)}$ y muestra que se obtiene una ecuación de onda

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + 2 \frac{\dot{R}}{R} \frac{\mathrm{d}\Delta}{\mathrm{d}t} = \left\{ 4\pi G \rho_0 - k^2 c^2 \right\} \Delta,\tag{70.9}$$

donde k_c es el vector de onda en coordenadas de comovimiento y está relacionado con el vector de onda propio k mediante la relación $k_c = Rk$.

La primera solución de la ec.(70.9) ocurre cuando el medio se expande de manera constante, de tal forma que $\dot{R}=0$ y así la relación de dispersión para ondas de la forma $\Delta=\Delta_0\exp{i\,(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ está dada por

$$\omega^2 = c^2 k^2 - 4\pi G \rho_0 \tag{70.10}$$

El significado de esta relación es claro. Primeramente, si $\omega^2>0$ entonces las soluciones son oscilatorias. Escribiendo $\lambda=2\pi/k$ se obtiene que las oscilaciones estables son encontradas para casos en los cuales las longitudes de onda son menores a la longitud de onda de Jeans λ_J definida por

$$\lambda_{\rm J} = \frac{2\pi}{k_{\rm J}} = c \left(\frac{\pi}{G\rho_0}\right)^{1/2}.$$
 (70.11)

El caso $\omega^2 < 0$ corresponde a modos inestables y las soluciones son

$$\Delta = \Delta_0 \exp{(\Gamma t + i \mathbf{k} \cdot \mathbf{r})}, \qquad \text{donde} \qquad \Gamma = \pm \sqrt{\left\{4\pi G \rho_0 \left(1 - \lambda_J^2/\lambda^2\right)\right\}}. \tag{70.12}$$

Para el caso en el que $\lambda \gg \lambda_J$, la taza de crecimiento $\Gamma = \pm \sqrt{(4\pi G \rho_0)}$, y por lo tanto, el

tiempo característico para que la inestabilidad ocurra está dado por

$$\tau = 1/\sqrt{(4\pi G \rho_0)} \sim 1/\sqrt{(G \rho_0)}.$$
 (70.13)

Este análisis corresponde al criterio de estabilidad de Jeans que se vio en el capítulo V. Para resolver totalmente la ec.(70.9) es necesario utilizar las soluciones correspondientes a las ecuaciones de Friedmann. Ya que lo mas interesante para nosotros son las inestabilidades para longitudes de onda grandes, consideremos el límite $\lambda \gg \lambda_J$. Así, la ec.(70.9) puede escribirse como

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + 2 \frac{\dot{R}}{R} \frac{\mathrm{d}\Delta}{\mathrm{d}t} = 4\pi G \rho_0 \Delta \tag{70.14}$$

Tarea 25

(1) Para el caso del universo de Einstein-de Sitter ($\Omega_0 = 1$), R(t) está dado por la ec.(67.7). Muestra con esto que la ec.(70.14) puede reescribirse como

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + \frac{4}{3t} \frac{\dot{R}}{R} \frac{\mathrm{d}\Delta}{\mathrm{d}t} - \frac{2}{3t^2} \Delta = 0 \tag{70.15}$$

Busca soluciones a esta ecuación de la forma $\Delta \propto t^n$ y muestra que las soluciones a la ecuación algebraica que se encuentra al sustituir este valor de Δ en la ecuación diferencial, ec.(70.15), tiene soluciones n=2/3, -1. Las soluciones con n=-1 corresponden a un modo de decaimiento y la solución n=2/3 es la solución correspondiente al modo de crecimiento del contraste de densidades. Muestra que para este caso

$$\frac{\delta \rho}{\rho} \propto R = (1+z)^{-1}$$
. (70.16)

Este resultado es sumamente importante, pues contrario a lo que sucede para el caso $\dot{R}=0$ donde el crecimiento del contraste de densidades se lleva a cabo de manera exponencial, este crecimiento ocurre algebraicamente aquí.

(II) En el universo de Milne ($\Omega_0 = 0$), la ec.(67.9) implica que $R(t) = H_0 t$. Muestra que

la ec.(67.3) es en este caso

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + \frac{2}{\mathrm{t}} \frac{\mathrm{d}\Delta}{\mathrm{d}t} = 0. \tag{70.17}$$

Encuentra soluciones del tipo $\Delta \propto t^n$ y muestra que n=0, -1 son soluciones. El modo n=1 decae, mientras que el otro modo implica que el contraste de densidades es constante

$$\Delta = const. \tag{70.18}$$

Este resultado no es de extrañarse pues si no hay gravedad, no debe haber razón alguna para que las perturbaciones en la densidad se amplifiquen.

Para épocas tempranas del universo, las perturbaciones primordiales se encuentran en la etapa de dominación por radiación. Por tanto es importante analizar el caso del crecimiento de perturbaciones para un gas relativista.

Tarea 26

(1) Utilizando la relación calculada en la sección §22

$$\frac{\partial (wu^k)}{\partial x^k} - u^k \frac{\partial p}{\partial x^k} = 0,$$

muestra que

$$\frac{\mathrm{d}}{\mathrm{dt}} \left\{ \left(\rho + \frac{p}{c^2} \right) \gamma \right\} = \left(\rho + \frac{p}{c^2} \right) \gamma \nabla \cdot v + \frac{\gamma}{c^2} \frac{\mathrm{d}p}{\mathrm{d}t}, \tag{70.19}$$

donde γ es el factor de Lorentz para la velocidad v. Si consideramos que el movimiento microscópico del gas es relativista (la ecuación de estado corresponde a la de un gas ultrarelativista), pero su movimiento macroscópico es no-relativista ($\gamma \sim 1 + v^2/2c^2$) entonces muestra que la ec.(70.19) que representa la conservación de la energía toma la forma

$$\frac{\mathrm{d}\rho}{\mathrm{dt}} = -\frac{4}{3}\rho\left(\nabla\cdot\boldsymbol{v}\right). \tag{70.20}$$

Las ecuaciones de Einstein

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}T_{ik},$$
 (70.21)

al contraerse en los índices i, y k implican que

$$R = -\frac{8\pi G}{c^4} T \tag{70.22}$$

en donde $R=R_i^i$ y $T=T_k^k$. Sustituyendo la ec.(70.22) en la ec.(70.21), las ecuaciones de Einstein pueden ser reescritas como

$$R_{ik} = \frac{8\pi G}{c^4} \left(T_{ik} - \frac{1}{2} g_{ik} T \right). \tag{70.23}$$

Cuando el campo gravitacional tiende a su límite Newtoniano, entonces

$$\nabla^2 g_{00} = \frac{8\pi G}{c^4} T_{00}, \tag{70.24}$$

y la componente temporal del tensor métrico está dada por

$$g_{00} = 1 + \frac{2\phi}{c^2}. (70.25)$$

La ec.(70.24) es la ecuación de Poisson para el campo gravitacional. Comparando la ec.(70.24) con la ec.(70.23) y la ec.(70.21) se ve que una corrección a esta relación está dada por

$$\frac{1}{2}\nabla^2 g_{00} = \frac{8\pi G}{c^4} \left(T_{00} - \frac{1}{2} g_{00} T \right), \tag{70.26}$$

(II) Utilizando la ec.(70.26) muestra que la ecuación de Poisson generalizada está dada por

$$\nabla^2 \phi = 4\pi G \left\{ \rho + \frac{3p}{c^2} \right\}. \tag{70.27}$$

Esta ecuación es válida para un gas ultrarelativista con movimientos macroscópicos no-relativistas.

La última relación que se necesita para el análisis es la ecuación de Euler. Como los movimientos macroscópicos del fluido son no-relativistas, entonces la ec.(70.3) para una presión uniforme inicial es válida

$$\frac{\mathrm{d}v}{\mathrm{dt}} = -\frac{1}{\rho}\nabla p - \nabla \phi. \tag{70.28}$$

(III) Compara la ec.(70.20), ec.(70.27) y la ec.(70.28) con las ecs.(70.2)-(70.4) y muestra que la ecuación que describe el crecimiento de la inestabilidad para el contraste de densidades ∧ está dada por

$$\frac{\mathrm{d}^2 \Delta}{\mathrm{d}t^2} + 2 \frac{\dot{R}}{R} \frac{\mathrm{d}\Delta}{\mathrm{d}t} = \frac{32\pi G \rho_0}{3} \Delta \tag{70.29}$$

(IV) Finalmente, encuentra soluciones de la forma $\Delta \propto t^n$ a esta última relación y utiliza el hecho de que el factor de escala está dado por la ec.(69.8) para mostrar que

$$\Delta \propto R^2 \propto (1+z)^{-2} \tag{70.30}$$

Para finalizar esta sección mencionemos brevemente las consecuencias de los resultados obtenidos. Para corrimientos al rojo tales que $\Omega_0 z > 1$ la dinámica del universo critico es valida y por lo tanto R \propto t^{2/3}. Así, el crecimiento de la inestabilidad está dado por la ec.(70.16). Para corrimientos al rojo menores a $1/\Omega_0$ esta estabilidad crece mucho mas lenta y cuando $\Omega_0 = 0$, la estabilidad permanece constante. Para universos dominados por radiación el crecimiento está dado por la ec.(70.30).

En la época presente para la cual existen diversas estructuras como las galaxias, el sistema solar, la tierra, sol y humanos. De aquí se sigue que $\Delta \geq 1$ a z=0. En la última superficie de dispersión del universo, cuando $z\approx 1000$ entonces las amplitudes en las fluctuaciones de la densidad $\Delta=\delta\rho/\rho\geq 10^{-3}$. Ahora bien, para un universo politrópico $(p\propto \rho^{\kappa})$ que se expande adiabáticamente $\delta T=(\partial T/\partial\rho)_s=(\kappa-1)T/\rho$, es decir cuando $\kappa=4/3$ se obtiene

$$\frac{\delta T}{T} = \frac{1}{3} \frac{\delta \rho}{\rho} \tag{70.31}$$

De esta manera las fluctuaciones en la temperatura son mayores a una parte en 10^3 . Esto está dos ordenes de magnitud por debajo de las fluctuaciones que se observan en la radiación cósmica de fondo en ángulos mayores a 10° . La manera de solventar este problema es asumiendo que el material intergaláctico se encuentra totalmente ionizado para corrimientos al rojo menores a $z \sim 1500$ de tal manera que se obtiene una profundidad óptica suficientemente grande para la dispersión de Thomson la cual es capaz de amortiguar

la amplitud de las fluctuaciones en la temperatura.

§71. Materia oscura

Los cálculos de la masa de las estrellas en un cúmulo utilizando el producto de la luminosidad total visible por el cociente de masa-luminosidad M/L de una galaxia típica implica que la masa estelar de una galaxia $M_{\star}10^{13}-10^{14} M_{\odot}$. Esto resulta en un conflicto con las estimaciones dinámicas que se obtienen mediante el teorema del virial,

$$M_{\rm din} \approx \frac{v^2 R}{G}.$$
 (71.1)

donde v es la velocidad de dispersión de las componentes radiales de velocidad de los miembros galácticos. Resulta que $M_{\rm din} \sim 10^{14}-10^{15} {\rm M}_{\odot} \sim 10 {\rm M}_{\star}$. Esto indica que existe materia~oscura entre las galaxias de un cúmulo galáctico. Esta materia oscura fue predicha primeramente por Zwicky en la década de los 1930's. En ocasiones se le denomina también la masa perdida, aunque realmente debería llamarse luz perdida.

La materia oscura también puede ser detectada mediante observaciones en rayos—X y es observada en galaxias de tamaños suficientemente grandes. Para estas últimas galaxias individuales, los resultados indican que las galaxias están rodeadas de halos masivos de materia oscura. Esta materia oscura es de origen desconocido y puede estar constituida de objetos sin radiación propia como los astrónomos, los ladrillos, las piedras y demás, así como de partículas exóticas "calientes" denominadas Partículas Masivas de Interacción Débil (PMID).

A pesar de que cada vez que se quiere entender un fenómeno dinámico en el universo, para el cual todo parece indicar que hay una estimación de masa inferior, existe gente que ha comenzado a pensar que todo esto de la materia oscura es simplemente una idea barata.

En la década de los 1980's, Milgrom propuso que la razón por la cual las curvas de rotación de las estrellas que giran alrededor de una galaxia son como son (i.e. no tienen perfiles Keplerianos) es debido a que la ley de gravitación de Newton debe ser modificada cuando las aceleraciones que actúan sobre las masas orbitantes (estrellas) son suficientemente grandes. La modificación a la ley de Newton, conocida como teoría de la dinámica modificada (MOND –Modified Newtonian Dynamics) dicta que para aceleraciones sufi-

cientemente grandes entonces

$$\frac{a^2}{a_0} = -\frac{GM}{r^2},\tag{71.2}$$

en donde a_0 es la constante de Milgrom cuyas dimensiones son de aceleración y la aceleración de la partícula de prueba (estrella) es a. No se sabe mucho con respecto a los fundamentos teóricos que tal predicción tendría. Lo cierto es que es una receta bastante simple de aplicar y ha pasado diversas pruebas experimentales. Aún falta bastante para concluir si la teoría de MOND es cierta. La ec.(71.2) muestra que el lado izquierdo de la ecuación de gravitación universal de Newton (la dinámica) ha sido modificada. Uno podría arreglar esta ecuación como para que la modificación se tuviera en el lado derecho de la ecuación y por lo tanto tener una modificación de la fuerza de gravitación. Milgrom prefiere decir que es la dinámica la que se modifica, pero no existe ningún argumento empírico o teórico para tal elección.

§72. Inflación

A pesar de que el modelo de la cosmología caliente es excelente en predecir y dar cuentas de bastantes observaciones, padece gravemente de ciertos problemas básicos. El mas obvio de todos se debe al alto grado de isotropía que presenta la radiación cósmica de fondo en escalas menores a 10° en el plano del cielo y con desviaciones de una parte en 10⁵ para ángulos mayores. La posibilidad de la uniformidad del universo a larga escala es difícil de explicarse ya que en el modelo estándard cosmológico, el universo se desenvuelve demasiado rápido para permitir que un equilibrio de esta forma se lleve acabo por medio de los procesos comunes mediante los cuales un sistema llega al equilibrio termodinámico. La razón por la que esto no es posible es debido a la transmisión de información. La velocidad de la luz, tiene un valor finito y por lo tanto regiones causalmente desconectadas en el universo deberían estar lejos de un equilibrio termodinámico. La distancia máxima recorrida por la luz desde el principio del universo se denomina distancia del horizonte. En el modelo estándard de la cosmología, las señales de la radiación cósmica de fondo en microondas recibidas en la tierra a partir de direcciones opuestas en el cielo se originaron a una distancia de 90 veces la distancia del horizonte cuando fueron emitidas. Estas regiones

§72 INFLACIÓN 287

no estaban en contacto causal. Por lo tanto es difícil ver como es posible que estas dos regiones hayan evolucionado de tal manera que sus propiedades fuesen las mismas. Este problema que presenta el modelo estándard de la cosmología es conocido como el *problema del horizonte*.

Para ilustrar el problema del horizonte mediante un ejemplo consideremos una galaxia separada de nosotros hoy en día por una distancia de 10^9 años luz. Como la edad del universo es $t_0 \sim 1-2 \times 10^{10}$ años, entonces cabe la posibilidad de intercambiar 10-20 señales entre esa galaxia y nosotros. Ahora bien, en la época de recombinación, cuando el factor de escala $R=10^{-3}R(t_0)$, la separación entre nosotros y esta galaxia fue de 10^6 años luz. Utilizando el hecho de que $R \sim t^{2/3}$, de acuerdo con la ec.(67.7), entonces la distancia entre nosotros y aquella galaxia distante no se encuentra 10^3 veces mas cercana. De hecho se encuentra $10^{9/2}$ mas cercana. De esta manera no existe la posibilidad de intercambiar ni siquiera una sola señal entre ambas galaxias.

El siguiente problema que presenta el modelo estándard es el problema de aplanado. Es difícil ver como el universo debe poseer un aplanado notable hoy en día y por tanto en sus épocas tempranas con tanta presición. Definitivamente este valor debió haber sido puesto en las primeras etapas del universo y es una condición que debe ser seleccionada naturalmente con mucho cuidado, de lo contrario Ω_0 sería muy distinta de la unidad hoy en día.

Finalmente la homogeneidad del universo a larga escala resulta un problema, pues no existe una uniformidad a escalas cortas en el universo como todos nosotros sabemos. Por ejemplo, un gas normal en equilibrio térmico es bastante inhomogeneo por los movimientos azarosos de las partículas internas al mismo. Estas fluctuaciones en el valor homogéneo de la presión y densidad debieron haberse llevado acabo en las etapas tempranas del universo. A esta peculiaridad del estado inicial de la materia se le conoce como el problema de suavizado en el modelo estándard de la cosmología.

Para poder explicar los fenómenos que ocurren en el modelo estándard de la cosmología es necesario mezclar ingredientes de cosmología, astrofísica y física nuclear. Sin embargo, en etapas muy tempranas del universo es necesario utilizar otras ramas de la física. En estas épocas del universo la temperatura es tan grande que toda la materia es descompuesta en sus componentes fundamentales en forma de partículas elementales. Para poder entender estas etapas del universo es necesario utilizar los conocimientos de partículas elementales.

De todos los modelos de partículas elementales, el mas fundamental de todos es la teoría de la gran unificación. Básicamente esta teoría consiste en que las cuatro fuerzas de la naturaleza: la gravitación, la electromagnética, la débil y la fuerte forman parte de una misma y única gran fuerza unificada. Básicamente, en esta teoría, una simetría pone una relación entre dos fuerzas. Las cuatro fuerzas de la naturaleza en el universo presente son bastante diferentes y por tanto la teoría cósmica en etapas tempranas es construida de tal forma que la simétrica es rota espontáneamente en el universo actual[†].

La teoría de gran unificación muestra que el número de bariones no se conserva. Esto quiere decir básicamente que el protón tiene una vida media la cual resulta ser bastante grande: $\sim 10^{60}$ años para temperaturas bajas. Sin embargo para temperaturas altas, los cambios en el número de bariones se presentan de manera mas común.

Naturalmente, al combinar el modelo estándard de la cosmología con las teorías de gran unificación es posible entender la asimetría de bariones—antibariones. El exceso de materia sobre antimateria se lleva acabo a temperaturas menores a la temperatura crítica de rompimiento de simetría.

El problema del horizonte se debe al hecho de que la gravedad produce una deceleración en la expansión cósmica, es decir, $R(t) \propto t^n$ con n < 1. La manera de evadir este problema es proponiendo una solución mediante la cual el universo se expanda de manera exponencial acelerada a tiempos menores a los de la fase de crecimiento t^n . De esta manera en un universo acelerado existe la posibilidad de tener regiones del universo causalmente conectadas en el pasado de tal manera que pudiesen haber estado coordinadas antes de la época inflacionaria.

La manera en la que el modelo inflacionario funciona es prediciendo una época de crecimiento exponencial $R(t) \propto e^t$. Esta situación debió haber ocurrido cuando en etapas posteriores a la que la energía del universo $kT \sim 10^{15} \, \text{GeV}$, mas o menos cuando el tiempo cósmico era menor a $\sim 10^{-36} \, \text{s}$, cuando el universo tenía unos cuantos centímetros de largo.

[†]Un rompimiento espontáneo de simetría es aquel mediante el cual el estado de equilibrio de un sistema se encuentra escondido. Por ejemplo, un líquido descrito por leyes físicas que son simétricas rotacionalmente, es simétrico rotacionalmente en si mismo. En otras palabras, la distribución de sus moléculas se ve igual sin importar el ángulo al cual se observa el líquido. Cuando el líquido se enfría los átomos se arreglan a manera de cristales a lo largo de sus ejes cristalográficos y la simetría rotacional se rompe. De esta manera cuando la temperatura de un sistema con simetría rota se incrementa puede llevarse a un estado (como una transición de fase) mediante el cual la simetría es preestablecida.

§72 INFLACIÓN 289

De cualquier forma, es importante notar que el universo debió haber emergido de una región causalmente conectada no mas grande que la escala de $Plank^{\dagger}$. De esta manera, como $t_0 \sim 10^{10}$ años $\sim 10^{17}$ s, entonces $t_0 \approx 10^{60} t_{Plank}$. Con esto, lo único que hay que hacer es que el universo crezca mas aya de los 10^{60} veces que se ha incrementado desde la época de Plank.

En los modelos de gran unificación de la física, al cuantizar los campos y utilizar el principio de incertidumbre existe la posibilidad de tener fluctuaciones incluso cuando el valor del campo sea nulo. Esto significa que el vacío como tal posee una energía $\rho_{\rm v}c^2$ y una presión distinta de cero $p_{\rm v}$. Como vimos en la sección §68 al expander un pedazo de volumen de vacío, su energía se incrementa por un factor $\rho_{\rm v}c^2\delta V$. Es decir, el trabajo $p_{\rm v}\delta V=-\rho_{\rm v}c^2\delta V$, por lo que la presión del vacío tiene un valor negativo: $p_{\rm v}=-\rho_{\rm v}c^2$. Como ya vimos anteriormente esto corresponde a un valor de la constante cosmológica dado por la ec.(68.7). La solución a la ec. de Friedmann para este caso es

$$t_{P} = \left(\frac{Gh}{c^{5}}\right)^{1/3} \sim 10^{-43} \, s \tag{72.1}$$

Con esto, la longitud de Plank lp queda determinada por

$$l_P = ct_P = \left(\frac{Gh}{c^2}\right)^{1/3} \sim 10^{-35} \,\mathrm{m}.$$
 (72.2)

Finalmente la masa de Plank mp está dada por

$$\mathfrak{m}_P = \left(\frac{hc}{G}\right) \approx 5 \times 10^{-5} g\,. \tag{72.3}$$

La razón por la que el análisis de Plank es tomado en serio (mas en serio que el de Stoney) es la siguiente. Cuando la longitud de onda cuántica λ del universo es mayor que el tamaño del universo l_U es claro que los efectos cuánticos en el universo deben dominar su comportamiento. Es posible mostrar que esta situación ocurre cuando $l_U < l_P$. El análisis dimensional es una de las herramientas mas poderosas en la física, de hecho las dimensiones dan a los objetos físicos un carácter único, mas aya del carácter matemático. El análisis hecho por Plank muestra que existe una barrera de escala y de tiempo los cuales no pueden ser atravesados en el sentido que mas abajo de estos límites, las leyes de la física como las percibimos no funcionan.

 $^{^\}dagger George$ Stoney en la década de los 1870's fue la primer persona en darse cuenta que utilizando ciertas constantes fundamentales de la física era posible construir una longitud, una masa y un tiempo característico. En efecto, utilizando la carga del electrón e, la constante de gravitación de Newton G y la velocidad de la luz c Stoney construyó una masa $M_J=(e^2/G)^{1/2}\approx 10^7\,\mathrm{g}$, una longitud $l_J=(Ge^4/c^4)^{1/2}\approx 10^{-37}\,\mathrm{m}$ y un tiempo $t_J=(Ge^2/c^6)^{1/2}\approx 10^{-46}\,\mathrm{s}$. De manera independiente, Max Plank utilizó para construir estas dimensiones fundamentales a la constante de Plank \hbar , la constante de gravitación universal de Newton y la velocidad de la luz. De aquí se construye el tiempo de Plank t_P , dado por

$$R(t) \propto \exp(\Omega_{\Lambda}^{1/2} H_0 t). \tag{72.4}$$

De esta manera es posible afinar la solución de tal manera que se pueda tener contacto causal entre distintas regiones. La expansión exponencial resuelve el problema de aplanado de manera obvia. Si inicialmente el radio de curvatura tenía un valor distinto de infinito, el rápido crecimiento del universo se encarga de aplanar y suavizarlo de tal manera que la curvatura del universo sea nula.

El gran problema que presenta la inflación es el hecho de que el universo sea capaz de super-enfriarse de tal manera que la densidad de masa (en materia oscura y visible) sea la dominante en el universo actual. De hecho la fase de crecimiento exponencial debe terminar abruptamente para que exista un recalentamiento del universo a temperaturas suficientes para sintetizar bariones.

Actualmente varias teorías favorecen a la inflación caótica. En este modelo no hay una singularidad inicial del universo simple. Por el contrario, el universo puede extenderse muchísimo mas aya de los 10-20 mil millones de años que presenta el radio de Hubble. Poco a poco, nuevas galaxias y objetos aparecerán dentro del radio de Hubble a medida que el reloj que mide el tiempo cósmico avanza. De hecho lo que ahora llamamos nuestro universo puede bien ser parte de un ensamble mas grande de un ciclo reproductivo eterno de distintos universos. Cada uno de estos universos no se encuentran causalmente conectados en la época presente, sin embargo provienen de un ancestro común. En cada uno de estos universos la forma en la que se llevaron acabo los rompimientos espontáneos de simetría pudo haberse llevado de distinta manera y solamente en alguno de ellos (como el nuestro) la física se manifiesta como la percibimos. Es por esto que la vida se origino en nuestro sistema solar. Esto da lugar al famoso principio antrópico que dice que las leyes de la física son justamente como deben de ser, es decir, están hechas con tal precisión que un movimiento mínimo de las mismas impedirían la existencia de varios objetos físicos en el universo, como la vida humana. Esto es todo un tema con implicaciones ciertamente severas, pero actualmente ha renacido con aún mas fuerza este principio gracias a las observaciones hechas con supernovas en galaxias distantes.

§73. Energía oscura

La tecnología actual permite observar eventos de supernovas que ocurren en distintas galaxias. Las supernovas de tipo IA funcionan como velas estándares en el sentido de que su luminosidad es la misma independientemente del fenómeno observado. En otras palabras, el espectro siempre tendrá la misma forma al ser observado en la tierra. En la tierra observamos el flujo de esta emisión, y como se conoce su luminosidad es posible calcular la distancia a la que ocurre el evento. En otras palabras, el observar supernovas de este tipo en diversas galaxias permite realizar mediciones de tal forma que diversos parámetros fundamentales del universo como Ω_0 , Ω_Λ , H_0 , q_0 , etc. pueden ser calculados.

Resulta que de todas las observaciones actuales (rayos-X, óptico y radio), la densidad de la materia visible mas la densidad de la materia oscura mas la densidad de energía en radiación observada en la radiación cósmica de fondo son únicamente una tercera parte de la densidad crítica necesaria para cerrar el universo. Además, al medir con precisión el receso de las galaxias resulta que estas se están acelerando con mucho mayor fuerza que la que cualquier modelo cosmológico indicaría. Esto significa que existe una nueva fuente de energía, la energía oscura que está inerte en todo el espacio. El carácter de esta fuente es repulsivo. A primera vista, todo parecería que es el vacío el que de alguna manera está involucrado. El problema con utilizar al vacío como energía oscura es que su fuerza sería excesivamente grande y se manifestaría enormemente en la aceleración de las galaxias. Por si fuera poco, las teorías de unificación combinadas con la teoría de supersimetría dan una cancelación exacta al vacío. Si la cancelación fuese imperfecta debería ser casi nula (con una precisión de 120 lugares decimales) y por tanto este tan perfecto entonamiento del universo no parece factible.

En la época presente, la materia y la energía oscura poseen densidades de energía comparables. Por esta razón, en el pasado del universo, la constante cosmológica debió haber tenido el mismo valor que el de hoy en día. De tal forma que cuando el universo era 100 ordenes de magnitud mas denso que el universo actual (10° años) por cada 10¹00 partes de materia, los procesos físicos crearon una y sola una parte de energía del vacío. Esto es difícil de creer.

Los griegos describieron al universo compuesto por cuatro elementos: tierra, aire, agua y fuego. Denominaron a una sustancia especial que detenía a la tierra, luna y planetas para

no caer hacia la esfera celeste. Esta quinta sustancia, o quintaesencia es la que ha dado nombre a la teoría actual correspondiente a la energía oscura en el universo. Realmente existen mas teorías, pero esta parece ser la que mas fuerza posee al presente.

En la teoría de la quintaesencia existe una aceleración producida en tiempos recientes del universo. La presión de la quintaesencia es menos negativa que la del vacío y varía con el tiempo. De esta manera, se produce una aceleración moderada de las galaxias en la época actual. La ecuación de estado de la quintaesencia es

$$p_{\mathbf{x}} = \omega c^2 \rho_{\mathbf{x}}.\tag{73.1}$$

A diferencia de los modelos de vació con $\omega=-1$, la ecuación de estado para la quintaesencia puede variar siendo positiva, negativa o cero. Estamos en una época en la cuál observamos $\omega\sim-1$. El punto clave es identificar a la quintaesencia con un campo cuántico. Por si fuera poco, al igual que con la constante cosmológica, es difícil pensar la forma en la que el universo debió haber sido creado con tanta precisión como para tener la aceleración observada hoy en día. De esta manera, existe la posibilidad de pensar en un principio antrópico. La manera de salir del principio antrópico es modelar al campo como un atractor global de tal forma que, independientemente de las condiciones iniciales, se llegue al mismo resultado a medida que avanza el tiempo. No obstante, es difícil imaginar en que época y por qué justo en la nuestra es cuando la quintaesencia tiene un papel fundamental. Hasta el momento todo parece indicar que existe un momento clave en el cual la quintaesencia podría haber comenzado a dominar: la superficie de la última dispersión de la luz. Es evidente que cualquiera que sea el causante de la energía oscura, este fenómeno físico determinará el futuro y destino del universo.

§74. El destino del universo

A pesar de que la física que prevalece en los primeros instantes desde la creación del universo ($t \lesssim 10^{-3} \, \mathrm{s}$) es bastante alentadora, es difícil tener bases experimentales para la misma, indirectas y sobre todo directas, que puedan dar solidez a la misma. De esta manera, existe un rango de tiempos que se extiende 40 ordenes de magnitud, desde el tiempo de Plank $10^{-43} \, \mathrm{s}$ hasta $t \sim 10^{-3} \, \mathrm{s}$, donde podemos estar mas o menos seguros de

nuestro entendimiento de la microfísica que debió haber dominado al universo. La escala de tiempo sobre la cuál podemos estar seguros de nuestro entendimiento del universo se extiende 12 ordenes de magnitud, desde $t \sim 10^{-3} \, s$ hasta $t_0 \sim 10^9 \, s$. Este último intervalo de tiempo está dividido en dos partes. El intervalo en el cual 10^{-3} s $< t < 10^{13}$ s y el intervalo de tiempo tardío donde $t > 10^{13} s$. El primer intervalo de tiempo requiere del conocimiento de física básica bastante incierta y especulativa. Es en estas escala de tiempo donde el aplanado del universo, el número de bariones comparado con número de fotones, las fluctuaciones primordiales de la radiación cósmica de fondo, la materia oscura exótica y la energía oscura son creados. La segunda etapa constituye el modelo caliente del universo y es donde se producen los elementos ligeros y donde la radiación de cuerpo negro del gas primordial del universo deja de ser opaca. Este segundo intervalo de tiempo es de cierta manera, fácil de calcular puesto que existe homogeneidad y aplanado del universo. La última etapa se da después de la recombinación de los elementos. De aquí se sigue la creación de las galaxias, los cúmulos de galaxias, los supercúmulos de galaxias y demás. Esta última región es principalmente el trabajo de los astrónomos y es complicada pues representa la manifestación de toda la física existente.

Sea cual sea el inicio del universo, es también importante saber cual será su final. Básicamente esto depende de la curvatura del mismo y del comportamiento de la energía oscura y la energía del vacío. Hoy en día todo parece indicar que el universo se expandirá por siempre. De cualquier manera, analicemos rápidamente los destinos del universo sin tomar en cuenta la energía oscura actual y tomando en cuenta que la energía del vacío es despreciable en la época presente.

- # Universo en recolapso (cerrado). → Si el tiempo t = 0 corresponde al tiempo del recolapso (lo opuesto de la gran explosión), entonces existen diversas épocas importantes a destacar para el universo
- $\star~t\sim-10^9$ años . \rightarrow Cúmulos de galaxias se amalgaman
- \star t ~ -10⁸ años . → Las galaxias se amalgaman entre sí.
- $\star~t\sim-10^6$ años . \Rightarrow Las estrellas se mueven a velocidades relativistas.
- $\star~t\sim-10^5$ años . \Rightarrow La temperatura del cielo es más caliente que la temperatura de la superficie estelar.
- \star t $\sim -10^3$ años . \Rightarrow Las estrellas son destruidas y los agujeros negros crecen de manera

catastrófica.

- \star t ~ -1 año . → La temperatura es mayor a 108 K en todas partes.
- † Universo en expansión por siempre (abierto). → Cuando el espacio es capaz de
 expandirse por siempre existe la posibilidad de sobrevivir por un poco mas de tiempo, pero
 no por siempre:
- $\star~t\sim 10^{14}~\text{años}$. \Longrightarrow Actividad estelar finalizada. Básicamente, la muerte de las estrellas.
- $\star~t\sim 10^{17}~\text{años}$. \Longrightarrow Relajación dinámica significante en las galaxias.
- $\star~t\sim 10^{20}$ años . \Longrightarrow Efectos de radiación gravitacional en galaxias significante.
- * $t \sim 10^{31} 10^{36}$ años . \rightarrow Decaimiento del protón.
- * $t \sim 10^{64}$ años . \rightarrow Evaporación cuántica de agujeros negros.
- \star t $\sim 10^{1600}$ años . \Rightarrow Las enanas blancas se transforman en hierro si el decaimiento del protón no se lleva acabo conforme a las predicciones teóricas.
- \star t $\sim 10^{10^{26}}-10^{10^{76}}$ años . \Rightarrow Si el protón no decae, entonces las estrellas de neutrones pasan por una etapa de tunelaje cuántico para transformarse en agujeros negros, los cuales se evaporan rápidamente.

Llevamos un buen camino recorrido con respecto al entendimiento del universo y las leyes físicas que lo rigen. Sin embargo, es necesario recorrer aún mas y ahí es donde entras tu...